期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进型降噪自动编码器的家用负荷辨识方法
1
作者 刘宣 刘兴奇 +3 位作者 唐悦 窦健 巫钟兴 倪斌 《电测与仪表》 北大核心 2024年第11期68-75,90,共9页
家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑... 家用负荷辨识准确性受数据采样速率制约显著,过高的采样速率能够解决数据问题,但也带来成本提高、系统设计复杂等问题。基于此,提出了一种仅依赖常规采样速率有功功率量测的非侵入式负荷辨识方法,所提方法对传统的降噪自动编码器算法滑动窗的重叠部分计算进行了改进,使用中值滤波器对重叠窗的数据结果进行处理,能够较好地克服辨识结果偏高的问题。通过在REDD(reference energy disaggregation dataset)和TraceBase两个家庭用电数据集开展测试,证明了所提方法在辨识设备功率和判断设备所处状态两个方面都具有较好的效果,且各项指标均好于经典的基于因子隐马尔可夫模型(factorial hidden Markov model,FHMM)算法。另外所提算法的通用性较好,能够对不同型号、品牌的同种设备进行有效辨识,具有较好的实用价值。 展开更多
关键词 负荷辨识 自动编码器 REDD数据集 TraceBase数据集 机器学习
在线阅读 下载PDF
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:12
2
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 栈式稀疏自动编码器
在线阅读 下载PDF
优化堆叠降噪自编码器用于调度操作票自动校验
3
作者 区伟健 徐策 +2 位作者 曾传凯 蒋宗祺 乐庆丰 《核电子学与探测技术》 CAS 北大核心 2024年第2期356-361,共6页
为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验... 为实现核电厂变电站电力调度操作票的自动智能校验,提出了一种基于优化堆叠降噪自编码器(OSDAE)操作票自动校验方法。该方法在对操作票文本进行向量化的基础上,利用优化过的堆叠降噪自编码器实现操作票文本的语义辨析与正误自动化校验。实验结果表明,所提方法的操作票校验评估综合指标可达94.88%,是几种方法中最高的,具有一定的优势。 展开更多
关键词 堆叠编码器 金豺狼优化算法 操作票 自动校验
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
4
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠稀疏编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于改进堆栈降噪自动编码器的预想事故频率指标评估方法研究 被引量:32
5
作者 赵荣臻 文云峰 +4 位作者 叶希 唐权 李文沅 陈云辉 瞿小斌 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4081-4092,共12页
可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多... 可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。 展开更多
关键词 一次调频 频率指标 深度学习 随机森林 改进堆栈自动编码器 DROPOUT 均方根反向传播优化
在线阅读 下载PDF
基于堆叠稀疏降噪自动编码器的地区风电场群高精度超短期风电功率预测
6
作者 吴卓 《电工材料》 CAS 2022年第1期72-75,共4页
为解决风电功率预测过程中面临的风电数据量大且复杂化以及如何提高预测精度的问题,基于堆叠稀疏降噪自动编码器提出地区风电场群高精度超短期风电功率预测方法。该方法采用自编码器对输入风电功率数据进行降维提取特征,为进一步增强自... 为解决风电功率预测过程中面临的风电数据量大且复杂化以及如何提高预测精度的问题,基于堆叠稀疏降噪自动编码器提出地区风电场群高精度超短期风电功率预测方法。该方法采用自编码器对输入风电功率数据进行降维提取特征,为进一步增强自动编码器的抗干扰性,对其引入稀疏性约束和降噪技术。该方法能够有效降低数据的解析难度和提高特征提取的可靠性。通过实际算例验证,该预测方法可有效提高多风电场功率预测的精度。 展开更多
关键词 风电功率 稀疏 堆叠自编码器
在线阅读 下载PDF
基于堆叠降噪自编码器的肝癌亚型分类 被引量:2
7
作者 张甜甜 赵庶旭 王小龙 《计算机应用与软件》 北大核心 2024年第6期79-84,共6页
肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大... 肝癌是威胁人类健康的常见恶性肿瘤之一。通过对基因数据使用深度学习方法进行整合来系统地获取对肝癌的认知,使用多组学的疾病分析方法来探究各组学之间的相互关系,有助于更准确的临床决策。然而,由于多组学数据具有高维稀疏性,存在大量的冗余特征和较少的可用临床标签样本。堆叠降噪编码器(SDAE)是能够从海量数据中获取有效特征的高效模型,因此基于SDAE模型提出一种层次式堆叠降噪编码器,来学习肝癌的RNA表达、miRNA表达和DNA甲基化数据的特征并进行整合和识别。实验结果表明:Hi-SDAE方法提高了对肝癌亚型分类的准确度,为肝癌针对性治疗提供了更有价值的参考依据。 展开更多
关键词 堆叠 自动编码器 数据 多组学整合 肝癌亚型
在线阅读 下载PDF
基于堆栈降噪自动编码器的桥梁损伤识别方法 被引量:8
8
作者 谢祥辉 单德山 周筱航 《铁道建筑》 北大核心 2018年第5期1-5,共5页
基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使... 基于深度学习理论,针对现有桥梁损伤模式识别法的不足,利用多个降噪自动编码器进行损伤特征的提取与组合,应用Softmax方法判断损伤模式,提出了基于堆栈降噪自动编码器的桥梁损伤识别方法。为了验证所提方法的准确性,以连续梁桥为例,使用所提方法及现有BP神经网络法进行损伤位置识别,对比了2种方法的识别精度和抗噪性能。研究结果表明:所提方法能准确识别损伤位置,相对于现有BP神经网络法具有更强的损伤识别能力、更高的识别精度及较强的抗噪能力。 展开更多
关键词 公路桥梁 损伤识别 深度学习 堆栈自动编码器 连续梁桥
在线阅读 下载PDF
基于堆叠降噪自动编码器的胶囊缺陷检测方法 被引量:16
9
作者 王宪保 何文秀 +2 位作者 王辛刚 姚明海 钱沄涛 《计算机科学》 CSCD 北大核心 2016年第2期64-67,共4页
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通... 目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 展开更多
关键词 堆叠自动编码器 缺陷检测 深度学习
在线阅读 下载PDF
基于降噪自动编码器及其改进模型的微博情感分析 被引量:14
10
作者 李阳辉 谢明 易阳 《计算机应用研究》 CSCD 北大核心 2017年第2期373-377,共5页
随着自然语言处理科学的迅猛发展,情感分析作为其重要的一个分支广泛应用于社交网络平台上,尤其是微博由于其传播广泛且蕴涵丰富的情感信息而备受学者青睐。为解析微博中表达的情感信息以及深入挖掘其蕴涵的潜在感情,在降噪自动编码器... 随着自然语言处理科学的迅猛发展,情感分析作为其重要的一个分支广泛应用于社交网络平台上,尤其是微博由于其传播广泛且蕴涵丰富的情感信息而备受学者青睐。为解析微博中表达的情感信息以及深入挖掘其蕴涵的潜在感情,在降噪自动编码器的深度模型之上研究探索改进了这个深度学习模型。降噪自动编码器的工作特点是在引入噪声的干扰之下实现对原始输入的还原,而其改进模型的优势在于考虑到了噪声的多样性和复杂性,并通过深度学习训练加强模型的原始特征复原能力,以此来克服不可预判的原始输入噪声。通过分别使用SVM、降噪自动编码器模型以及改进的模型进行情感分析实验,对比分类效果而得出改进的深度模型对微博文字情感把握更准确而且抗干扰能力及鲁棒性有所提升的结论。 展开更多
关键词 自动编码器 微博 情感分析 深度学习
在线阅读 下载PDF
优化堆叠降噪自动编码器滚动轴承故障诊断 被引量:22
11
作者 余萍 曹洁 《太阳能学报》 EI CAS CSCD 北大核心 2021年第11期307-314,共8页
针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状... 针对深度堆叠降噪自动编码器(SDAE)网络超参数采用经验枚举获得时存在的泛化能力较弱,且选参过程与设计人员经验有关,效率低等问题,利用新设计的人工变性天牛算法(ATLA)对SDAE网络超参数进行自适应选取,并确定网络结构,训练得到故障状态的特征表示,最后输入到Softmax分类层进行故障检测,并确定故障类别。通过变工况下滚动轴承故障诊断仿真实验验证,该文所提出的ATLA-SDAE诊断方法在泛化性能、故障识别率等方面均优于BP神经网络、支持向量机(SVM)以及卷积神经网络(CNN)方法,能够从海量数据中自适应地提取更深层次的故障特征,可避免手动设计和提取故障特征的繁琐过程,更有利于提高故障分类的精度和诊断效率。 展开更多
关键词 风电机组 堆叠自动编码器 超参数 人工变性天牛算法 故障诊断 滚动轴承
在线阅读 下载PDF
基于稀疏降噪自编码器的深度置信网络 被引量:12
12
作者 曾安 张艺楠 +1 位作者 潘丹 Xiao-Wei Song 《计算机应用》 CSCD 北大核心 2017年第9期2585-2589,共5页
传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网... 传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网络无论在准确率还是学习效率上都无法得到进一步提升。针对以上问题,提出一种基于稀疏降噪自编码器(SDAE)的深度网络模型,其核心是稀疏降噪自编码器对数据的特征提取。首先,训练稀疏降噪自编码;然后,用训练后得到的权值和偏置来初始化深度置信网络;最后,训练深度置信网络。在Poker Hand纸牌游戏数据集和MNIST、USPS手写数据集上测试模型性能,在Poker Hand数据集下,方法的误差率比传统的深度置信网络降低46.4%,准确率和召回率依次提升15.56%和14.12%。实验结果表明,所提方法能有效地改善模型性能。 展开更多
关键词 深度置信网络 受限玻尔兹曼机 稀疏编码器 深度学习
在线阅读 下载PDF
基于栈式降噪自动编码器的气体识别 被引量:5
13
作者 于万钧 安改换 +2 位作者 鹿文静 甘超 刘全 《计算机工程与设计》 北大核心 2017年第3期814-818,836,共6页
为克服手工设计特征的繁杂过程以及特征不通用性,提高气体识别准确率,提出一种基于深度学习的气体定性识别方法,自动提取自适应的气体数据特征。实验基于UCI机器学习气体数据集,分别对比基于2层深度神经网络结构-栈式降噪自动编码器以... 为克服手工设计特征的繁杂过程以及特征不通用性,提高气体识别准确率,提出一种基于深度学习的气体定性识别方法,自动提取自适应的气体数据特征。实验基于UCI机器学习气体数据集,分别对比基于2层深度神经网络结构-栈式降噪自动编码器以及浅层机器学习算法的气体定性识别效果。实验结果表明,基于深度学习算法自动提取特征的过程更简单、通用,提高了气体识别的准确率,改善了传统方法的复杂流程。 展开更多
关键词 气体识别 时间序列信号 高维 深度学习 自动编码器
在线阅读 下载PDF
基于改进正余弦算法优化堆叠降噪自动编码器的电机轴承故障诊断 被引量:18
14
作者 李兵 梁舒奇 +2 位作者 单万宁 曾文波 何怡刚 《电工技术学报》 EI CSCD 北大核心 2022年第16期4084-4093,共10页
轴承是电机的重要组成部分,其故障振动信号存在噪声干扰,导致特征提取困难,堆叠降噪自动编码器(SDAE)通过将输入数据随机置零训练网络可以有效抑制噪声干扰。此外,不理想的超参数组合易引起SDAE诊断性能不佳。因此,提出一种基于改进正... 轴承是电机的重要组成部分,其故障振动信号存在噪声干扰,导致特征提取困难,堆叠降噪自动编码器(SDAE)通过将输入数据随机置零训练网络可以有效抑制噪声干扰。此外,不理想的超参数组合易引起SDAE诊断性能不佳。因此,提出一种基于改进正余弦算法(ISCA)优化SDAE的电机轴承故障诊断方法。首先,在改进正余弦算法(SCA)粒子值更新公式中引入非线性惯性权重并对控制参数加入余弦变化构造ISCA,利用ISCA对SDAE超参数自适应选取;其次,利用具有最优网络结构的SDAE模型的无监督自学习特征提取方法提取振动信号特征参数,从而实现更好的故障诊断效果。仿真及现场实验结果表明,该方法收敛速度快、诊断准确率高,而且具有较强的鲁棒性,在电机轴承故障诊断方面具有较好的应用前景。 展开更多
关键词 堆叠自动编码器 改进正余弦算法 电机轴承 故障诊断 自适应
在线阅读 下载PDF
稀疏降噪自编码器在IR-BCI的应用研究 被引量:4
15
作者 赵瑞娟 官金安 谢国栋 《计算机工程与应用》 CSCD 北大核心 2017年第11期167-171,共5页
针对脑-机接口的特征提取问题,提出了一种基于非监督学习的稀疏降噪自编码器,对刺激诱发的脑电信号进行自主学习,构建原始数据的深层特征表达。该编码器引用稀疏自编码神经网络,通过加入噪声,增强其学习的泛化能力,增加了神经网络的鲁... 针对脑-机接口的特征提取问题,提出了一种基于非监督学习的稀疏降噪自编码器,对刺激诱发的脑电信号进行自主学习,构建原始数据的深层特征表达。该编码器引用稀疏自编码神经网络,通过加入噪声,增强其学习的泛化能力,增加了神经网络的鲁棒性。首先对多导联信号进行重新拼接,输入稀疏降噪自编码器,得到原始数据的稀疏特征表达;然后,采用支持向量机将学习到的特征进行分类;最后,同直接使用最优单通道相对比。实验结果为:稀疏降噪自编码器的分类准确率要优于单通道,表明该方法能够更好地学习到特征,并提高了"模拟阅读"脑-机接口的识别正确率,为脑-机接口系统的特征提取和分类提供了新思路。 展开更多
关键词 模拟阅读 脑-机接口 非监督学习 稀疏编码器 支持向量机
在线阅读 下载PDF
基于降噪自动编码器的不平衡情感分类研究 被引量:12
16
作者 秦胜君 卢志平 《科学技术与工程》 北大核心 2014年第12期232-235,共4页
目前,网络评论的情感分类研究大部分是不平衡样本数据,正向样本的数量一般远大于负向样本,对这种不平衡样本集进行分类时容易产生少数类误差较大的问题。而且由于网络评论的表达形式多变,不易获取到大量的有监督的数据。针对上述问题,... 目前,网络评论的情感分类研究大部分是不平衡样本数据,正向样本的数量一般远大于负向样本,对这种不平衡样本集进行分类时容易产生少数类误差较大的问题。而且由于网络评论的表达形式多变,不易获取到大量的有监督的数据。针对上述问题,对无监督的不平衡网络评论情感分类进行研究。首先通过改进降噪自动编码器,提高少数类的特征值,避免分类样本向多数类偏移。然后将获取的特征值作为k-means算法的输入值,实现了无监督的样本分类。实验证明,该算法对不平衡率较高的样本具有良好的适应性,从而验证了算法的有效性。 展开更多
关键词 情感分类 深度学习 自动编码器 不平衡数据
在线阅读 下载PDF
改进沙猫群优化算法优化堆叠降噪自动编码器的发动机故障诊断 被引量:5
17
作者 蒋开正 吕丽平 《机械设计》 CSCD 北大核心 2023年第8期56-62,共7页
车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对... 车辆发动机振动信号受到噪声干扰,影响故障诊断精度,而堆叠降噪自动编码器(SDAE)可以有效抑制噪声干扰,但SDAE模型超参数对诊断性能影响较大,不合理的模型超参数容易引起SDAE诊断性能不佳。因此,文中采用一种新型沙猫群优化算法(SCSO)对SDAE参数进行优化选取。考虑到沙猫群优化算法(SCSO)中沙猫群种群缺乏变异机制的缺陷,在其探索阶段和开发阶段分别引入柯西变异机制和高斯变异机制,得到了改进沙猫群优化算法(ISCSO),并提出了SCSO优化SDAE的发动机故障诊断方法。发动机故障诊断实例结果表明:与其余5种方法相比,所提方法的平均诊断精度提高了1.47%~6.5%,平均耗时缩短了5.29~19.44 s。 展开更多
关键词 堆叠自动编码器 沙猫群优化算法 柯西变异 高斯变异 发动机 故障诊断
在线阅读 下载PDF
基于导向重构与降噪稀疏自编码器的合成孔径雷达目标识别 被引量:2
18
作者 王健 秦春霞 +1 位作者 杨珂 任萍 《兵工学报》 EI CAS CSCD 北大核心 2020年第9期1861-1870,共10页
为解决现有合成孔径雷达(SAR)目标识别算法泛化能力差和算法复杂度高等问题,提出一种基于导向重构与降噪稀疏自编码器的SAR目标识别分类算法。利用导向重构算法对SAR图像进行两尺度融合预处理,生成一维图像矢量并作归一化处理,以降低图... 为解决现有合成孔径雷达(SAR)目标识别算法泛化能力差和算法复杂度高等问题,提出一种基于导向重构与降噪稀疏自编码器的SAR目标识别分类算法。利用导向重构算法对SAR图像进行两尺度融合预处理,生成一维图像矢量并作归一化处理,以降低图像输出特征的维度,提高预处理的速度;采用减少降噪自编码器隐层神经元方式对图像进行低维特征抽取和识别;使用Softmax分类器进行分类处理。实验结果表明,通过导向重构与降噪稀疏自编码器的SAR目标识别算法,不仅提高了目标识别性能以及泛化能力,而且降低了自编码器的隐层神经元数量和计算复杂度,网络结构也得到改进和优化。 展开更多
关键词 合成孔径雷达 导向重构 稀疏编码器 正则化Softmax 目标识别
在线阅读 下载PDF
基于堆叠降噪稀疏自动编码器的软件缺陷预测 被引量:1
19
作者 薛参观 《计算机与现代化》 2018年第5期65-69,126,共6页
特征提取是软件缺陷预测中的关键步骤,特征提取的质量决定了缺陷预测模型的性能,但传统的特征提取方法难以提取出软件缺陷数据的深层本质特征。深度学习理论中的自动编码器能够从原始数据中自动学习特征,并获得其特征表示,同时为了增强... 特征提取是软件缺陷预测中的关键步骤,特征提取的质量决定了缺陷预测模型的性能,但传统的特征提取方法难以提取出软件缺陷数据的深层本质特征。深度学习理论中的自动编码器能够从原始数据中自动学习特征,并获得其特征表示,同时为了增强自动编码器的鲁棒性,本文提出一种基于堆叠降噪稀疏自动编码器的特征提取方法,通过设置不同的隐藏层数、稀疏性约束和加噪方式,可以直接高效地从软件缺陷数据中提取出分类预测所需的各层次特征表示。利用Eclipse缺陷数据集的实验结果表明,该方法较传统特征提取方法具有更好的性能。 展开更多
关键词 软件缺陷预测 特征提取 深度学习 堆叠稀疏自动编码器
在线阅读 下载PDF
基于改进的堆叠降噪自动编码器深度模型的转子-转轴系统故障诊断方法 被引量:8
20
作者 姜万录 李金虎 +1 位作者 李振宝 姜安琦 《机床与液压》 北大核心 2020年第21期182-188,196,共8页
旋转机械转子-转轴系统故障诊断方法中大多采用传统浅层模型,对于数量较大的样本其处理能力有限。为解决此问题,提出一种利用改进的堆叠降噪自动编码器(SDAE)深度模型的故障诊断方法,并对转子-转轴系统的典型故障进行诊断。利用某机械... 旋转机械转子-转轴系统故障诊断方法中大多采用传统浅层模型,对于数量较大的样本其处理能力有限。为解决此问题,提出一种利用改进的堆叠降噪自动编码器(SDAE)深度模型的故障诊断方法,并对转子-转轴系统的典型故障进行诊断。利用某机械故障综合模拟实验台,结合基于LabVIEW开发的信号采集系统模拟并采集转子-转轴系统的10类单一故障和7类复合故障振动信号。在训练SDAE模型时引入Dropout机制对模型进行改进,并结合Softmax分类器进行网络训练与诊断。与传统BP网络、自动编码器(AE)、无Dropout机制的SDAE和卷积神经网络(CNN)进行对比,结果表明:改进的SDAE方法对于转子-转轴系统故障的正确识别率最高,特别是对复合故障的诊断效果比其他模型更理想,充分验证了改进的SDAE深度模型的优越性。 展开更多
关键词 故障诊断 深度模型 堆叠自动编码器 Dropout机制
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部