由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,...由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,学习时神经网络模型中各神经元间权值得到合理调整,并且提高了误差收敛效率。仿真结果表明,估计结果在预设精度要求的范围之内,平均误差不超过4%,证明经过优化学习算法的BP神经网络模型对蓄电池荷电状态的精确估计是有效可行的。展开更多
In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimi...In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.展开更多
文摘由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,学习时神经网络模型中各神经元间权值得到合理调整,并且提高了误差收敛效率。仿真结果表明,估计结果在预设精度要求的范围之内,平均误差不超过4%,证明经过优化学习算法的BP神经网络模型对蓄电池荷电状态的精确估计是有效可行的。
基金The National Key Technology R&D Program during the 11th Five-Year Plan Period of China (No. 2009BAG17B02)the National High Technology Research and Development Program of China (863 Program) (No. 2011AA110304)the National Natural Science Foundation of China (No. 50908100)
文摘In order to reduce average arterial vehicle delay, a novel distributed and coordinated traffic control algorithm is developed using the multiple agent system and the reinforce learning (RL). The RL is used to minimize average delay of arterial vehicles by training the interaction ability between agents and exterior environments. The Robertson platoon dispersion model is embedded in the RL algorithm to precisely predict platoon movements on arteries and then the reward function is developed based on the dispersion model and delay equations cited by HCM2000. The performance of the algorithm is evaluated in a Matlab environment and comparisons between the algorithm and the conventional coordination algorithm are conducted in three different traffic load scenarios. Results show that the proposed algorithm outperforms the conventional algorithm in all the scenarios. Moreover, with the increase in saturation degree, the performance is improved more significantly. The results verify the feasibility and efficiency of the established algorithm.