期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
林区TM图像消除噪声方法的比较 被引量:8
1
作者 王立海 赵正勇 《东北林业大学学报》 CAS CSCD 北大核心 2005年第5期77-79,共3页
介绍了几种消除噪声滤波方法的数学基础,并结合吉林省汪清林业局数据,分别用低通滤波、统计滤波、增强型自适应滤波、均值平滑滤波、中值滤波方法对研究区TM遥感图像进行滤波消噪处理,并以平滑指数FI、边缘保持因素T和峰值信噪比PSNR为... 介绍了几种消除噪声滤波方法的数学基础,并结合吉林省汪清林业局数据,分别用低通滤波、统计滤波、增强型自适应滤波、均值平滑滤波、中值滤波方法对研究区TM遥感图像进行滤波消噪处理,并以平滑指数FI、边缘保持因素T和峰值信噪比PSNR为评价指标,对实验结果进行了对比分析,结果表明,统计滤波(D=1)和增强型自适应滤波用于林区TM图像消除噪声的滤波器中比较好。 展开更多
关键词 TM图像 消除噪声 林区 边缘保持 增强型自适应滤波 滤波
在线阅读 下载PDF
A comparative study of the denoising methods of Thematic Mapper images for forest areas 被引量:1
2
作者 赵正勇 王立海 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第2期123-127,共5页
The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critica... The noises of remote sensing images, caused by imaging system and ground environment, negatively affect the accuracy and efficiency in extracting forest information from remote sensing images. The denoising is critical for image classifications for forest areas. The objective of this research is to assess the effectiveness of currently used spatial filtering methods for extracting with forest information related from Landsat 5 TM images. Five spatial filtering methods including low-pass filter, median filter, mean filter, sigma filter and enhanced self-adaptive filter were examined. A set of evaluation indices was designed to assess the ability of each denoising method for flatness, edge/boundary retention and enhancement. Based on the designed evaluation indices and visual assessment, it was found that sigma filter (D=1) and enhanced self-adaptive filter were the most effective denoising methods in classifying TM images for forest areas. 展开更多
关键词 DENOISING Edge/boundary retention Enhanced self-adaptive filter TM image
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部