A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
Graphene shows great potentials in electrochemical energy-related areas.To enhance its properties and corresponding electrochemical performance,recently,three-dimensional(3D)graphene-based materials especially monolit...Graphene shows great potentials in electrochemical energy-related areas.To enhance its properties and corresponding electrochemical performance,recently,three-dimensional(3D)graphene-based materials especially monolithic porous graphene with encapsulated functional nanomaterials have arisen much research interest for electrochemical catalysis,lithium ion batteries(LIBs),lithium–sulfur batteries,supercapacitors,etc.With the enhanced structure properties such as interconnected graphene network,high volume-specific surface area and electronic conductivity,3D monolithic graphene is more suitable for the fabrication of composite electrode materials in real devices.In this article,we discuss recent development in fabricating monolithic 3D graphene and their composites using template-directed methods and their applications in electrochemical energy-related areas.展开更多
Based on effective field method,the dynamic effective elastic modulus of polymer matrix composites embedded with dense piezoelectric nano-fibers is obtained,and the interacting effect of piezoelectric surfaces/interfa...Based on effective field method,the dynamic effective elastic modulus of polymer matrix composites embedded with dense piezoelectric nano-fibers is obtained,and the interacting effect of piezoelectric surfaces/interfaces around the nano-fibers is considered.The multiple scattering effects of harmonic anti-plane shear waves between the piezoelectric nano-fibers with surface/interface are averaged by effective field method.To analyze the interacting results among the random nano-fibers,the problem of two typical piezoelectric nano-fibers is introduced by employing the addition theorem of Bessel functions.Through numerical calculations,the influence of the distance between the randomly distributed piezoelectric nano-fibers under different surface/interface parameters is analyzed.The effect of piezoelectric property of surface/interface on the effective shear modulus under different volume fractions is also examined.Comparison with the simplified cases is given to validate this dynamic electro-elastic model.展开更多
A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate ...A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate energies.The energy-balance model was employed for characterising the energy absorption behavior and it depends strongly on the plate diameter and thickness.In addition,the damage vs.energy and force maps is effective in monitoring damage growth within the composite panel.The response of the composite laminate configurations characterized by different stacking sequences subjected to low velocity impacts with different impact energies have also been studied to estimate the damage initiation of composites.展开更多
The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotro...The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.展开更多
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.
基金supported by Thousand Young Talents Program of the Chinese Central Government (0220002 102003)the National Natural Science Foundation of China (21373280)+2 种基金Beijing National Laboratory for Molecular Sciences (BNLMS)Hundred Talents Program at Chongqing University (0903005203205)Chongqing Basic and Frontier Research Project (cstc2015jcyj A50026)
文摘Graphene shows great potentials in electrochemical energy-related areas.To enhance its properties and corresponding electrochemical performance,recently,three-dimensional(3D)graphene-based materials especially monolithic porous graphene with encapsulated functional nanomaterials have arisen much research interest for electrochemical catalysis,lithium ion batteries(LIBs),lithium–sulfur batteries,supercapacitors,etc.With the enhanced structure properties such as interconnected graphene network,high volume-specific surface area and electronic conductivity,3D monolithic graphene is more suitable for the fabrication of composite electrode materials in real devices.In this article,we discuss recent development in fabricating monolithic 3D graphene and their composites using template-directed methods and their applications in electrochemical energy-related areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172185 and 11272222)the Natural Science Foundation for Outstanding Young Researcher in Hebei Province of China(Grant No.A201410015)+1 种基金the National Key Basic Research Program of China(Grant No.2012CB723300)the Training Program for Leading Talent in University Innovative Research Team in Hebei Province(Grant No.LJRC006)
文摘Based on effective field method,the dynamic effective elastic modulus of polymer matrix composites embedded with dense piezoelectric nano-fibers is obtained,and the interacting effect of piezoelectric surfaces/interfaces around the nano-fibers is considered.The multiple scattering effects of harmonic anti-plane shear waves between the piezoelectric nano-fibers with surface/interface are averaged by effective field method.To analyze the interacting results among the random nano-fibers,the problem of two typical piezoelectric nano-fibers is introduced by employing the addition theorem of Bessel functions.Through numerical calculations,the influence of the distance between the randomly distributed piezoelectric nano-fibers under different surface/interface parameters is analyzed.The effect of piezoelectric property of surface/interface on the effective shear modulus under different volume fractions is also examined.Comparison with the simplified cases is given to validate this dynamic electro-elastic model.
基金supported by the National Natural Science Foundation of China(Grant No.11302151)the Fundamental Research Funds for the Central Universities
文摘A study was undertaken to determine the effects of several key geometry influencing factors on the impact response and energy absorption behavior of the glass fibre reinforced epoxy composites at low and intermediate energies.The energy-balance model was employed for characterising the energy absorption behavior and it depends strongly on the plate diameter and thickness.In addition,the damage vs.energy and force maps is effective in monitoring damage growth within the composite panel.The response of the composite laminate configurations characterized by different stacking sequences subjected to low velocity impacts with different impact energies have also been studied to estimate the damage initiation of composites.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072179 and 11090334)Shanghai Leading Academic Discipline Project (Grant No. B302)
文摘The classical Hashin-Shtrikman variational principle was re-generalized to the heterogeneous piezoelectric materials.The auxiliary problem is very much simplified by selecting the reference medium as a linearly isotropic elastic medium.The electromechanical fields in the inhomogeneous piezoelectrics are simulated by introducing into the homogeneous reference medium certain eigenstresses and eigen electric fields.A closed-form solution can be obtained for the disturbance fields,which is convenient for the manipulation of the energy functional.As an application,a two-phase piezoelectric composite with nonpiezoelectric matrix is considered.Expressions of upper and lower bounds for the overall electromechanical moduli of the composite can be developed.These bounds are shown better than the Voigt-Reuss type ones.