为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选...为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选择来自相同角域的字典原子对相应极化方式下的HRRP进行表示,可以有效利用不同极化HRRP之间的相关信息提高目标识别性能。基于电磁散射数据对所提出的方法进行了测试,实验结果证明了方法的有效性。展开更多
传统压缩感知(CS,Compressive Sensing)成像方法一般假定目标精确位于事先划定的成像网格上,实际中由于散射点空间位置是连续分布的,因此偏离网格(Off-grid)问题必然存在.这会引起真实回波测量值与默认系统观测矩阵之间失配,导致传统CS...传统压缩感知(CS,Compressive Sensing)成像方法一般假定目标精确位于事先划定的成像网格上,实际中由于散射点空间位置是连续分布的,因此偏离网格(Off-grid)问题必然存在.这会引起真实回波测量值与默认系统观测矩阵之间失配,导致传统CS成像方法性能恶化.本文基于频率分集多输入多输出(FD-MIMO,Frequency Diverse Multiple-Input Multiple-Output)雷达,针对Off-grid目标提出了一种基于贝叶斯压缩感知的稀疏自聚焦(SAF-BCS,Sparse Autofocus Imaging Method Based on Bayesian Compressive Sensing)成像算法.该算法依据最大后验(MAP,Maximum A Posteriori)准则,利用变分贝叶斯学习技术求解含有Off-grid目标的稀疏像.与传统稀疏重构方法相比,所提方法充分利用了目标先验信息,可自适应调整参数,能够更好地反演稀疏目标,同时具有校正Off-grid目标的网格位置偏差以及估计噪声功率等优势.仿真结果表明SAF-BCS算法对网格划分不敏感,具有稳健的成像性能.展开更多
针对基于高斯先验模型的贝叶斯压缩感知在目标方位(Direction Of Arrival,DOA)估计中可能出现明显随机伪峰的问题,改进了高斯先验模型,并在此基础上提出了一种贝叶斯压缩感知目标方位估计方法。通过波束输出噪声背景预估与二值指示变量...针对基于高斯先验模型的贝叶斯压缩感知在目标方位(Direction Of Arrival,DOA)估计中可能出现明显随机伪峰的问题,改进了高斯先验模型,并在此基础上提出了一种贝叶斯压缩感知目标方位估计方法。通过波束输出噪声背景预估与二值指示变量标记,并引入基于信号先验方差的噪声方差估计方法,与变分贝叶斯推断相结合改进目标方位估计性能和优化迭代收敛过程。利用32元线阵对改进算法进行数值仿真处理和分析结果表明,该改进方法不仅可以准确估计目标信号的方位,而且可以显著地减少空间谱中伪峰的数量。实际海上实验数据处理结果表明,使用改进后的贝叶斯压缩感知方法进行DOA估计,可以显著地抑制空间谱中随机的伪峰,提高波束输出峰值背景比,具有更强的目标检测能力。展开更多
文摘为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选择来自相同角域的字典原子对相应极化方式下的HRRP进行表示,可以有效利用不同极化HRRP之间的相关信息提高目标识别性能。基于电磁散射数据对所提出的方法进行了测试,实验结果证明了方法的有效性。
文摘传统压缩感知(CS,Compressive Sensing)成像方法一般假定目标精确位于事先划定的成像网格上,实际中由于散射点空间位置是连续分布的,因此偏离网格(Off-grid)问题必然存在.这会引起真实回波测量值与默认系统观测矩阵之间失配,导致传统CS成像方法性能恶化.本文基于频率分集多输入多输出(FD-MIMO,Frequency Diverse Multiple-Input Multiple-Output)雷达,针对Off-grid目标提出了一种基于贝叶斯压缩感知的稀疏自聚焦(SAF-BCS,Sparse Autofocus Imaging Method Based on Bayesian Compressive Sensing)成像算法.该算法依据最大后验(MAP,Maximum A Posteriori)准则,利用变分贝叶斯学习技术求解含有Off-grid目标的稀疏像.与传统稀疏重构方法相比,所提方法充分利用了目标先验信息,可自适应调整参数,能够更好地反演稀疏目标,同时具有校正Off-grid目标的网格位置偏差以及估计噪声功率等优势.仿真结果表明SAF-BCS算法对网格划分不敏感,具有稳健的成像性能.
文摘针对基于高斯先验模型的贝叶斯压缩感知在目标方位(Direction Of Arrival,DOA)估计中可能出现明显随机伪峰的问题,改进了高斯先验模型,并在此基础上提出了一种贝叶斯压缩感知目标方位估计方法。通过波束输出噪声背景预估与二值指示变量标记,并引入基于信号先验方差的噪声方差估计方法,与变分贝叶斯推断相结合改进目标方位估计性能和优化迭代收敛过程。利用32元线阵对改进算法进行数值仿真处理和分析结果表明,该改进方法不仅可以准确估计目标信号的方位,而且可以显著地减少空间谱中伪峰的数量。实际海上实验数据处理结果表明,使用改进后的贝叶斯压缩感知方法进行DOA估计,可以显著地抑制空间谱中随机的伪峰,提高波束输出峰值背景比,具有更强的目标检测能力。