期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于注意力引导和多样本决策的舰船检测方法
1
作者 吕奕龙 苟瑶 +2 位作者 李敏 何玉杰 邢宇航 《北京航空航天大学学报》 北大核心 2025年第1期202-213,共12页
单阶段目标检测方法具有训练速度快、检测时间短的特点,然而其特征金字塔网络(FPN)难以抑制合成孔径雷达(SAR)舰船图像的背景和噪声信息,且检测头存在预测误差。针对该问题,提出一种基于注意力引导和多样本决策的检测方法,用于SAR舰船... 单阶段目标检测方法具有训练速度快、检测时间短的特点,然而其特征金字塔网络(FPN)难以抑制合成孔径雷达(SAR)舰船图像的背景和噪声信息,且检测头存在预测误差。针对该问题,提出一种基于注意力引导和多样本决策的检测方法,用于SAR舰船检测。提出一种注意力引导网络,将其添加至特征金字塔的最高层,使其抑制背景和噪声干扰,从而提升特征的表示能力。提出多样本决策网络,使其参与目标位置的预测。该网络通过增加回归分支中输出的样本数量,缓解预测误差对检测结果的影响。设计了一种新颖的最大似然损失函数。该损失函数利用多样本决策网络中输出的样本构造出最大似然函数,用于规范决策网络的训练,进一步提升目标定位的精度。以RetinaNet网络模型为基线方法,相较于基线方法及目前先进的目标检测方法,所提方法在舰船检测数据集SSDD上表现出最高的检测精度,AP达到52.8%。相比基线方法,所提方法在AP评价指标上提升了3.4%~5.7%,且训练参数量仅增加2.03×10^(6),帧率仅降低0.5帧/s。 展开更多
关键词 舰船检测 注意力引导 多样本决策 最大似然损失函数 单阶段检测 合成孔径雷达
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部