期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多岛遗传算法的轴承精超工艺多目标优化 被引量:6
1
作者 高新江 段玥晨 +1 位作者 赵华东 张伟豪 《现代制造工程》 CSCD 北大核心 2021年第11期116-120,共5页
为提高角接触球轴承内圈沟道精超加工精度及效率,利用ISIGHT优化软件对角接触球轴承内圈沟道精超工艺进行了多目标优化研究。首先通过正交试验得到一组样本点;然后采用二次多项式响应面法建立以工件转速、油石压力、油石摆动频率及超精... 为提高角接触球轴承内圈沟道精超加工精度及效率,利用ISIGHT优化软件对角接触球轴承内圈沟道精超工艺进行了多目标优化研究。首先通过正交试验得到一组样本点;然后采用二次多项式响应面法建立以工件转速、油石压力、油石摆动频率及超精时间等主要工艺参数为输入变量,以轴承内圈沟道表面粗糙度和沟道圆度误差为输出变量的多目标优化代理模型;最后,基于多岛遗传算法对多目标优化代理模型进行优化,得到一组最优精超工艺参数组合及结果预测值。试验结果表明:经过优化得到的表面粗糙度值比优化前的表面粗糙度值降低了15.244%,沟道圆度误差值比优化前的圆度误差值降低了14.87%,并且加工效率提升了21.43%,优化效果显著。 展开更多
关键词 角接触球轴承 多目标优化 正交试验 多目标优化代理模型 多岛遗传算法
在线阅读 下载PDF
NSGA2算法在十字防波板结构参数优化中的应用 被引量:1
2
作者 戚晨溪 李强 《汽车实用技术》 2024年第19期54-60,76,共8页
小型消防车的水箱质量和尺寸相对整车的占比均较大,导致在行驶过程中水箱内介质的晃动对车辆的操纵稳定性影响显著。为探究消防水箱内部十字防波板的结构参数对车辆的操纵稳定性的影响。首先借助正交试验的方法,利用有限元分析十字防波... 小型消防车的水箱质量和尺寸相对整车的占比均较大,导致在行驶过程中水箱内介质的晃动对车辆的操纵稳定性影响显著。为探究消防水箱内部十字防波板的结构参数对车辆的操纵稳定性的影响。首先借助正交试验的方法,利用有限元分析十字防波板结构参数对液体晃动时水箱的载荷转移量及晃动力的影响;然后建立十字防波板结构参数与水箱的载荷转移量及晃动力之间的多目标代理模型,基于NSGA2遗传算法与COWA算子决策出一组最优方案;最后对整车动力学模型进行有效性验证,并通过仿真比较不同方案对车辆操纵稳定性的影响。结果表明,优化后的十字防波板设计方案使水箱的载荷转移量与晃动力下降了29.17%与10.90%,相较于未设置防波板方案与初始防波板方案,在双移线工况下的侧倾角评分分别提高19.12%和10.09%,横摆角速度评分分别提高5.69%和1.65%。该研究为小型消防车的水箱十字型防波板优化设计提供了理论参考。 展开更多
关键词 小型消防车 十字防波板 正交试验 多目标优化代理模型 NSGA2遗传算法
在线阅读 下载PDF
Multi-objective optimisation of a vehicle energy absorption structure based on surrogate model 被引量:4
3
作者 谢素超 周辉 《Journal of Central South University》 SCIE EI CAS 2014年第6期2539-2546,共8页
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design... In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA &amp; REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM. 展开更多
关键词 railway vehicle energy-absorbing structure surrogate model Kriging method (KM) polynomial response surface method (PRSM) structure optimization
在线阅读 下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
4
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部