现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该...现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。展开更多
图像-文本检索是视觉-语言领域中的基本任务,其目的在于挖掘不同模态样本之间的关系,即通过一种模态样本来检索具有近似语义的另一种模态样本。然而,现有方法大多高度依赖于将图像特定区域和句中单词进行相似语义关联,低估了视觉多粒度...图像-文本检索是视觉-语言领域中的基本任务,其目的在于挖掘不同模态样本之间的关系,即通过一种模态样本来检索具有近似语义的另一种模态样本。然而,现有方法大多高度依赖于将图像特定区域和句中单词进行相似语义关联,低估了视觉多粒度信息的重要性,导致了错误匹配以及语义模糊嵌入等问题。通常,图片包含了目标级、动作级、关系级以及场景级的粗、细粒度信息,而这些信息无显式多粒度标签,难以与模糊的文本表达直接一一对应。为了解决此问题,提出了一个粒度感知和语义聚合(Granularity-Aware and Semantic Aggregation,GASA)网络,用于获得多粒度视觉特征并缩小文本和视觉之间的语义鸿沟。具体来说,粒度感知的特征选择模块挖掘视觉多粒度信息,并在自适应门控融合机制和金字塔空洞卷积结构的引导下进行了多尺度融合。语义聚合模块在一个共享空间中对来自视觉和文本的多粒度信息进行聚类,以获得局部表征。模型在两个基准数据集上进行了实验,在MSCOCO 1k上R@1优于最先进的技术2%以上,在Flickr30K上R@Sum优于之前最先进的技术4.1%。展开更多
文摘现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。
文摘图像-文本检索是视觉-语言领域中的基本任务,其目的在于挖掘不同模态样本之间的关系,即通过一种模态样本来检索具有近似语义的另一种模态样本。然而,现有方法大多高度依赖于将图像特定区域和句中单词进行相似语义关联,低估了视觉多粒度信息的重要性,导致了错误匹配以及语义模糊嵌入等问题。通常,图片包含了目标级、动作级、关系级以及场景级的粗、细粒度信息,而这些信息无显式多粒度标签,难以与模糊的文本表达直接一一对应。为了解决此问题,提出了一个粒度感知和语义聚合(Granularity-Aware and Semantic Aggregation,GASA)网络,用于获得多粒度视觉特征并缩小文本和视觉之间的语义鸿沟。具体来说,粒度感知的特征选择模块挖掘视觉多粒度信息,并在自适应门控融合机制和金字塔空洞卷积结构的引导下进行了多尺度融合。语义聚合模块在一个共享空间中对来自视觉和文本的多粒度信息进行聚类,以获得局部表征。模型在两个基准数据集上进行了实验,在MSCOCO 1k上R@1优于最先进的技术2%以上,在Flickr30K上R@Sum优于之前最先进的技术4.1%。