期刊文献+
共找到9,349篇文章
< 1 2 250 >
每页显示 20 50 100
基于红狐优化支持向量机回归的船舶备件预测
1
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
鲸鱼算法优化变分模态分解和支持向量机的日蒸发量预测模型
2
作者 付桐林 杨明霞 《陇东学院学报》 2025年第2期1-9,共9页
准确预测蒸发量能够为干旱半干旱沙区水资源的有效利用提供依据。已有的基于时间序列预测建模的研究忽略了变分模态分解(VMD)参数的优化,导致预测精度有待提高。采用鲸鱼优化算法(WOA)优化变分模态分解(VMD)的两个参数,借助于VMD提取出... 准确预测蒸发量能够为干旱半干旱沙区水资源的有效利用提供依据。已有的基于时间序列预测建模的研究忽略了变分模态分解(VMD)参数的优化,导致预测精度有待提高。采用鲸鱼优化算法(WOA)优化变分模态分解(VMD)的两个参数,借助于VMD提取出蒸发量时间序列的主要变化特征,选用支持向量机SVM作为预测主模块,并采用WOA优化支持向量机(SVM)的超参数,构建了不完全数据下一种新的蒸发量预测模型VMD-WOA-SVM,对甘肃省环县北部沙区日蒸发量进行预测。结果表明,与混合模型DWT-WOA-SVM相比,VMD-WOA-SVM具有更高的计算精度,在预测阶段,Nash–Sutcliffe效率系数(NSCE)的平均值由0.9143增加到0.9154,平均绝对百分比误差(MAPE)的平均值由17.37%下降到16.92%。 展开更多
关键词 变分模态分解 支持向量 鲸鱼算法 蒸发量
在线阅读 下载PDF
基于麻雀算法优化支持向量机的阀门内漏诊断研究
3
作者 龚家乐 曹丽华 +1 位作者 李大才 司和勇 《汽轮机技术》 北大核心 2025年第2期110-112,126,共4页
由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断... 由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断性能上与标准SVM模型进行对比分析。结果表明:在诊断过程中,SSA-SVM阀门内漏诊断模型能够适时调整模型参数,并保持较高的诊断性能,多个泄漏诊断指标均优于标准模型。当泄漏诊断准确率优先级高于诊断时间时,SSA-SVM诊断模型拥有更好的阀门泄漏诊断能力。 展开更多
关键词 阀门泄漏 支持向量 麻雀优化算法 故障诊断
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力
4
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于向量加权平均算法优化最小二乘支持向量机的电价短期预测
5
作者 陈晓华 吴杰康 杨国荣 《黑龙江电力》 2025年第1期1-7,共7页
针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模... 针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模型;选取某地区2010年1月1日-15日的电力价格数据进行分析。仿真结果表明:与核极限学习机、长短期记忆神经网络、LSSVM预测模型相比,INFO-LSSVM预测模型的预测效果更好;利用果蝇优化算法优化LSSVM的惩罚因子和核函数参数构建FOA-LSSVM预测模型的预测效果不及INFO-LSSVM预测模型,并且INFO的收敛速度比FOA快。通过与对照预测模型对比表明,INFO-LSSVM预测模型具有更好的预测性能。 展开更多
关键词 向量加权平均算法 最小二乘支持向量 电价预测 短期预测 INFO-LSSVM预测模型
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
6
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测
7
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
基于遗传算法优化支持向量机的文本自动分类方法
8
作者 胡翔 《信息技术与信息化》 2025年第2期164-167,共4页
在实际文本自动分类任务中,因文本的多样性和复杂性,常会遇到一些特殊的、不符合常规分类模式的文本。这些文本往往使得标引深度和标引专指度难以达到理想的平衡状态。这种不平衡导致在处理复杂模型和大规模数据时,支持向量机(SVM)模型... 在实际文本自动分类任务中,因文本的多样性和复杂性,常会遇到一些特殊的、不符合常规分类模式的文本。这些文本往往使得标引深度和标引专指度难以达到理想的平衡状态。这种不平衡导致在处理复杂模型和大规模数据时,支持向量机(SVM)模型在参数的选择上很难找到最优参数,造成分类精度较低的结果。为此,文章提出一种基于遗传算法优化支持向量机的文本自动分类方法。通过预处理来提高文本数据的质量,并引入TF-IDF(词频-逆文档频率)和词共现分析,构建出高效的文本数据特征向量。利用遗传算法对SVM模型参数进行优化,自动搜索最佳的参数配置,提升模型的分类性能。将预处理后的文本数据输入到优化后的SVM模型中,模型通过学习文本数据的特征向量与类别标签之间的映射关系,实现对新文本的自动分类。实验结果表明,该方法在分类精度、Kappa统计量和汉明损失3个关键指标上,均显著优于对比方法,有效提高了文本自动分类的准确性和稳定性。 展开更多
关键词 遗传算法 支持向量 文本自动分类 特征向量 优化模型参数
在线阅读 下载PDF
近红外无创血糖浓度的Label Sensitivity算法和支持向量机回归 被引量:1
9
作者 孟琪 赵鹏 +4 位作者 宦克为 李野 姜志侠 张瀚文 周林华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期617-624,共8页
近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在... 近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在预测精度低、预测值与标签值相关性不高等难点,至今没有达到临床要求。近年来,光谱检测技术发展迅猛且机器学习技术在智能信息处理方面具有明显优势,两者结合可以有效提高人体无创血糖医学监测模型的精度和普适性。提出了一种标签敏感度算法(LS),并结合支持向量机方法建立了人体血糖含量预测模型。使用近红外光谱仪采集了4名志愿者食指处动态血液光谱数据(每名志愿者28组数据),并使用多元散射矫正(MSC)方法消除了部分光散射的影响。考虑血糖对不同波长光的吸收有差异,提出了基于血糖浓度标签差的特征波长挑选方法,并构建了标签敏感度支持向量机(LSSVR)预测模型。设计实验,对比该模型与偏最小二乘回归(PLSR)和区分度支持向量机(FSSVR)算法。结果表明,LS算法的最佳特征波长数为32,经特征波长选择后的LSSVR表现最佳,其均方误差降低至0.02 mmol·L^(-1),明显优于全谱段PLSR模型,血糖浓度的预测值与标签值的相关系数提升至99.8%,预测值全部位于可容许误差的克拉克网格A区内。LSSVR模型的优异表现为早日实现血糖的无创监测提供了新思路。 展开更多
关键词 无创血糖 近红外光谱 特征波长 Label Sensitivity算法 支持向量
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:3
10
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
11
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 客舱座椅 支持向量回归 粒子群算法 舒适度评价预测
在线阅读 下载PDF
支持向量机回归算法的唐山市降水量空间插值研究 被引量:2
12
作者 张永奎 《吉林水利》 2024年第2期23-25,78,共4页
针对传统插值方法在处理小样本和非线性问题上的不足,运用支持向量机回归(SVR)算法对唐山市降水量进行空间插值研究,提出了SVR算法的解决方案,以提高降水预测的准确性。通过收集2020年唐山市32个气象站点观测数据,提取经度、纬度、经纬... 针对传统插值方法在处理小样本和非线性问题上的不足,运用支持向量机回归(SVR)算法对唐山市降水量进行空间插值研究,提出了SVR算法的解决方案,以提高降水预测的准确性。通过收集2020年唐山市32个气象站点观测数据,提取经度、纬度、经纬度乘积、海拔、坡度、坡向和GPM等参数作为特征变量,并利用SVR算法建立降水量空间插值模型。研究结果表明,SVR在解决小样本和非线性问题上具有显著优势,能够有效分析多维变量对降水量分布的影响;验证显示其插值精度R2为0.79, MAE和RMSE分别为33.57mm、39.29mm,该精度在可接受范围内。通过SVR插值法生成精确的降水量分布式信息,可为唐山市旱涝减灾、水资源利用及生态保护提供科学数据支持。 展开更多
关键词 支持向量回归算法 空间插值 降水量
在线阅读 下载PDF
基于支持向量机回归算法的盾构下穿市政管线参数优化研究 被引量:1
13
作者 王非 韩凯杰 +2 位作者 余鑫 金平 许卓淋 《广东土木与建筑》 2024年第5期65-67,共3页
随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持... 随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持向量机回归(SVMR)算法的机器学习模型,并通过优化算法反向求解得到了符合施工要求的盾构参数优化方案。研究结果表明,方法的有效性通过了数值模拟试验和工程实践的验证,能够基于已有的少量盾构参数,针对关键掘进参数如推力、刀盘转速等进行优化,并提出最优组合方案,以确保施工的安全与高效,可为类似工程提供参考。 展开更多
关键词 盾构下穿管线 支持向量回归 反向求解 掘进参数优化
在线阅读 下载PDF
基于改进模糊支持向量回归模型的地震人员伤亡预测研究
14
作者 沈健 李梦瑶 《价值工程》 2025年第7期101-104,共4页
本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最... 本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最优FSVR参数,最终建立PSO-FSVR地震伤亡预测模型。 展开更多
关键词 地震伤亡预测 模糊支持向量回归 粒子群优化算法 主成分分析
在线阅读 下载PDF
基于多输出支持向量回归算法的股市预测 被引量:4
15
作者 胡蓉 《云南民族大学学报(自然科学版)》 CAS 2007年第3期189-192,共4页
提出了一种新的多输出支持向量回归算法,给出了定义在超球上的损失函数,并将训练SVM转化为迭代解线性方程组,在求解过程中采用边计算边使矩阵降阶的方法,加快了运算速度.建立了该算法应用于股市预测的模型,对上证指数的建模与预测表明:... 提出了一种新的多输出支持向量回归算法,给出了定义在超球上的损失函数,并将训练SVM转化为迭代解线性方程组,在求解过程中采用边计算边使矩阵降阶的方法,加快了运算速度.建立了该算法应用于股市预测的模型,对上证指数的建模与预测表明:与单输出支持向量回归算法建立的模型相比,该算法具有更好的整体预测精度和抗噪性能,是对股市进行分析和预测的一种可行而有效的方法. 展开更多
关键词 多输出支持向量机回归算法 时间序列 股票指数 预测
在线阅读 下载PDF
基于变量敏感度筛选的回归型支持向量机的数控机床热误差预测 被引量:1
16
作者 李铁军 崔尚仪 张义民 《机械设计与制造》 北大核心 2024年第9期41-43,50,共4页
随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低... 随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低的干扰自变量。本方法与基本SVR模型对数控机床热误差预测值进行对比,结果表明基本SVR受到敏感度低的干扰自变量影响,预测结果与实测热误差结果偏差较大;经过变量敏感度筛选之后的SVR混合模型预测值具有更高的准确度,验证了此模型的可行性。 展开更多
关键词 数控 回归支持向量 变量敏感度筛选 热误差
在线阅读 下载PDF
基于麻雀算法优化支持向量机的NOx浓度预测 被引量:1
17
作者 宋美艳 刘畅 +1 位作者 张津 孙超 《计算机仿真》 2024年第7期129-134,289,共7页
煤炭作为火电厂发电的主要能源,其在锅炉内焚烧过程中会产生大量的氮氧化物。各电厂一般利用烟气自动监控系统对其浓度进行实时测量,但由于测量时存在较大迟延,不能准确地反映SCR系统NOx浓度的实时变化。因此提出了一种基于改进麻雀算... 煤炭作为火电厂发电的主要能源,其在锅炉内焚烧过程中会产生大量的氮氧化物。各电厂一般利用烟气自动监控系统对其浓度进行实时测量,但由于测量时存在较大迟延,不能准确地反映SCR系统NOx浓度的实时变化。因此提出了一种基于改进麻雀算法优化最小二乘支持向量机的NOX浓度预测方法。首先,引入余弦因子改进麻雀算法中的比例算子,将迭代次数信息引入到迭代过程中,平衡算法前后期的全局与局部搜索能力。其次,使用新的变异算子代替原算子,将混沌理论融合到麻雀算法,解决了算法全局搜索能力较差、初始化麻雀分布不稳定及发现者位置更新方式不足的问题。最后,采用改进麻雀算法(CDE-SSA)对最小二乘支持向量机(LSSVM)进行参数寻优。实验结果证明,方法在NOX浓度预测的精度和稳定性上均表现出了良好的性能。 展开更多
关键词 麻雀算法 最小二乘支持向量 氮氧化物浓度 火电 预测模型
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
18
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
一种支持向量机的相干解调系统误码率模拟预测算法
19
作者 孙培刚 李美丽 张全禹 《电子设计工程》 2024年第10期74-77,82,共5页
针对信道中高斯加性噪声引起接收端相干解调系统的误码问题,提出了一种支持向量机的相干解调系统误码率模拟预测算法,为提高通信系统的抗噪特性提供研究基础。文中采用差分进化算法与支持向量机SVM算法相结合的方法,通过差分进化算法优... 针对信道中高斯加性噪声引起接收端相干解调系统的误码问题,提出了一种支持向量机的相干解调系统误码率模拟预测算法,为提高通信系统的抗噪特性提供研究基础。文中采用差分进化算法与支持向量机SVM算法相结合的方法,通过差分进化算法优化SVM算法中的惩罚因子与高斯径向基的核函数参数,并对模拟环境下相干解调系统受高斯加性噪声影响所产生的误码数据进行了预测。实验结果表明,基于差分进化的SVM算法预测模型相比经典遗传算法预测精度提高了3.7%,预测精度基本满足误码率数据的预测要求,并具有较强的泛化能力。 展开更多
关键词 误码率 支持向量 差分进化算法 缺一个 相干解调系统
在线阅读 下载PDF
ZigBee技术和支持向量机下室内火灾自动报警系统
20
作者 邹峰 《现代电子技术》 北大核心 2025年第2期148-152,共5页
室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集... 室内火灾报警系统只能基于少量传感器的数据进行判断,容易受到烟雾、温度等干扰,导致误判率较高。为此,基于ZigBee技术和支持向量机设计一种室内火灾自动报警系统。采用传感器节点采集室内烟雾浓度与温度信息,通过ZigBee路由设备将采集的信息转发至ZigBee协调器内。利用基于负载均衡的ZigBee网络多径路由算法建立信息传输路径,将ZigBee路由设备转发的信息传输至支持向量机处理模块内。使用支持向量机算法处理烟雾浓度与温度信息,获取高校室内火灾类型的发生概率,并与事先设置的判别阈值进行比较,当火灾发生概率大于阈值,自动报警模块会自动发出警报。实验结果表明:所设计系统火灾信息采集精度较高,无线网络生存周期长,具备较优的信息传输效果,且能够有效计算高校室内火灾类型发生概率并自动发出警报。 展开更多
关键词 ZIGBEE技术 支持向量 室内火灾 自动报警 协调器 信息传输 多径路由算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部