期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
大型稀疏法方程组的代数多重网格解法 被引量:5
1
作者 郭飞霄 杨力 +1 位作者 刘荣 汪菲菲 《测绘科学技术学报》 北大核心 2012年第1期5-8,共4页
测量平差中经常会遇到大型稀疏法方程组的求解。传统的线性方程组迭代解法能够很快平滑误差分量中的高频分量;但对于低频分量衰减很慢。代数多重网格算法通过建立多重网格,并在不同的网格层上分别处理高低频误差分量,将所有层相互协调... 测量平差中经常会遇到大型稀疏法方程组的求解。传统的线性方程组迭代解法能够很快平滑误差分量中的高频分量;但对于低频分量衰减很慢。代数多重网格算法通过建立多重网格,并在不同的网格层上分别处理高低频误差分量,将所有层相互协调起来求解同一问题。这对于大规模稀疏线性方程组的求解,具有高效性。这里介绍了代数多重网格算法,并进行了改进,得到了AMG-CG算法。数值算例表明,代数多重网格算法(AMG)以及改进的AMG-CG算法对求解大型稀疏法方程组具有高效性和数值稳定性,改进后的AMG-CG算法在计算效率上进一步提高,对于大型稀疏法方程组的求解是可行有效的算法。 展开更多
关键词 大型法方程组 稀疏 迭代 代数多重网格算 高效性
在线阅读 下载PDF
Updating preconditioner for iterative method in time domain simulation of power systems 被引量:3
2
作者 WANG Ke XUE Wei +2 位作者 LIN HaiXiang XU ShiMing ZHENG WeiMin 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期1024-1034,共11页
The numerical solution of the differential-algebraic equations(DAEs) involved in time domain simulation(TDS) of power systems requires the solution of a sequence of large scale and sparse linear systems.The use of ite... The numerical solution of the differential-algebraic equations(DAEs) involved in time domain simulation(TDS) of power systems requires the solution of a sequence of large scale and sparse linear systems.The use of iterative methods such as the Krylov subspace method is imperative for the solution of these large and sparse linear systems.The motivation of the present work is to develop a new algorithm to efficiently precondition the whole sequence of linear systems involved in TDS.As an improvement of dishonest preconditioner(DP) strategy,updating preconditioner strategy(UP) is introduced to the field of TDS for the first time.The idea of updating preconditioner strategy is based on the fact that the matrices in sequence of the linearized systems are continuous and there is only a slight difference between two consecutive matrices.In order to make the linear system sequence in TDS suitable for UP strategy,a matrix transformation is applied to form a new linear sequence with a good shape for preconditioner updating.The algorithm proposed in this paper has been tested with 4 cases from real-life power systems in China.Results show that the proposed UP algorithm efficiently preconditions the sequence of linear systems and reduces 9%-61% the iteration count of the GMRES when compared with the DP method in all test cases.Numerical experiments also show the effectiveness of UP when combined with simple preconditioner reconstruction strategies. 展开更多
关键词 differential-algebraic equations GMRES updating preconditioner power system simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部