期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
面向大规模优化问题的精英贡献两阶段动态分组算法
1
作者 王彬 张娇 +2 位作者 李薇 王晓帆 金海燕 《计算机工程》 CAS CSCD 北大核心 2024年第7期154-163,共10页
协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,... 协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法性能的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,但在进行大规模优化时,其可能将无关的变量分配到同一子组件,从而无法充分利用分组提高协同进化效率。针对该问题,提出一种精英贡献两阶段动态分组算法(EC-TSDG)。在分组前阶段,对变量进行随机分组,评估变量的贡献程度,从众多变量中寻找精英贡献变量;在分组后阶段,利用变量的相关关系寻找与精英决策变量存在相互作用的剩余变量,并将其合并形成精英子组件,使得精英子组件内部的变量两两相关,以此提高变量分组的准确性以及算法的收敛速度,避免子组件之间的相关干扰。最后,采用具有外部存档的自适应差分进化算法作为优化器进化各个子组件。在CEC'2013测试集上与其他先进算法进行比较,实验结果表明,EC-TSDG收敛速度快于对比算法,Friedman检验值为1.43,平均排序较对比的动态分组算法DCC平均提升36.78%。 展开更多
关键词 协同进化 大规模优化问题 两阶段动态分组 贡献信息 精英子组件
在线阅读 下载PDF
进化算法在大规模优化问题中的应用综述 被引量:25
2
作者 梁静 刘睿 +1 位作者 瞿博阳 岳彩通 《郑州大学学报(工学版)》 CAS 北大核心 2018年第3期15-21,共7页
针对大规模问题的特点,对已有的大规模进化算法进行了简单的分析,主要介绍算法的初始化方法、不分组策略、静态分组策略、动态分组策略、自适应分组策略、大规模优化算法测试函数集以及算法结果的对比等方面;侧重描述优化算法的搜索策... 针对大规模问题的特点,对已有的大规模进化算法进行了简单的分析,主要介绍算法的初始化方法、不分组策略、静态分组策略、动态分组策略、自适应分组策略、大规模优化算法测试函数集以及算法结果的对比等方面;侧重描述优化算法的搜索策略、更新策略、突变策略和协同进化策略,并列出大规模优化算法测试函数集的特点及优化算法的评价方法;最后,给出了目前大规模优化问题的几个研究难点. 展开更多
关键词 大规模优化问题 进化算法 协同进化 种群初始化 基准测试函数
在线阅读 下载PDF
求解大规模优化问题的云差分进化算法 被引量:4
3
作者 袁斯昊 邓长寿 +2 位作者 董小刚 谭旭杰 范德斌 《计算机应用研究》 CSCD 北大核心 2016年第10期2949-2953,共5页
针对大规模优化问题求解难、差分进化算法运算时间长等问题,利用云计算MapReduce并行编程模型,结合差分进化算法隐含并行性,提出云差分进化算法。该算法利用Hadoop集群平台,采用多子群机制,并将子种群与Map任务形成一一对应关系;算法的... 针对大规模优化问题求解难、差分进化算法运算时间长等问题,利用云计算MapReduce并行编程模型,结合差分进化算法隐含并行性,提出云差分进化算法。该算法利用Hadoop集群平台,采用多子群机制,并将子种群与Map任务形成一一对应关系;算法的各个子种群之间根据拓扑结构进行个体迁移,以增加其多样性,从而能搜索更大的范围,提高寻优的几率。仿真实验结果表明,云差分算法能有效地减少求解大规模优化问题的时间消耗,并且取得较好的精度。 展开更多
关键词 大规模优化问题 差分进化 云计算
在线阅读 下载PDF
求解大规模优化问题的正交反向混合差分进化算法 被引量:3
4
作者 董小刚 邓长寿 +1 位作者 谭毓澄 彭虎 《计算机应用研究》 CSCD 北大核心 2016年第6期1656-1661,共6页
差分进化算法简单高效,然而在求解大规模优化问题时,其求解性能迅速降低。针对该问题,提出一种正交反向差分进化算法。首先,该算法利用正交交叉算子,加强了算法的局部搜索能力。其次,为防止过强的局部搜索使算法陷入早熟收敛,利用反向... 差分进化算法简单高效,然而在求解大规模优化问题时,其求解性能迅速降低。针对该问题,提出一种正交反向差分进化算法。首先,该算法利用正交交叉算子,加强了算法的局部搜索能力。其次,为防止过强的局部搜索使算法陷入早熟收敛,利用反向学习策略调节种群多样性,从而有效地平衡算法的全局和局部搜索能力。利用11个标准测试函数进行实验,并和差分进化算法的四种优秀改进版本进行比较,实验结果表明提出的算法求解精度高、收敛速率快,是一种求解大规模优化问题的有效算法。 展开更多
关键词 大规模优化问题 差分进化 正交交叉 反向学习
在线阅读 下载PDF
求解大规模优化问题的新型协同差分进化算法 被引量:2
5
作者 董小刚 邓长寿 +2 位作者 谭毓澄 彭虎 吴志健 《计算机应用》 CSCD 北大核心 2017年第11期3219-3225,共7页
基于分而治之的策略,研究求解大规模优化问题的新方法。首先,基于加性可分性原理提出一种改进的变量分组方法,该方法以随机取点的方式,成对检测所有变量之间的相关性;同时,充分利用相关性学习的信息,对可分变量组进行再次降维;其次,引... 基于分而治之的策略,研究求解大规模优化问题的新方法。首先,基于加性可分性原理提出一种改进的变量分组方法,该方法以随机取点的方式,成对检测所有变量之间的相关性;同时,充分利用相关性学习的信息,对可分变量组进行再次降维;其次,引入改进的差分进化算法作为新型子问题优化器,增强了子空间的寻优性能;最后,将两项改进引入到协同进化框架构建DECC-NDG-CUDE算法。在10个选定的大规模优化问题上进行分组和优化两组仿真实验,分组实验结果表明新的分组方法能有效识别变量的相关性,是有效的变量分组方法;优化实验表明,DECCNDG-CUDE算法对10个问题的求解相对于两种知名算法DECC-DG、DECCG在性能上具备整体优势。 展开更多
关键词 大规模优化 变量分组 加性可分 优化 协同进化
在线阅读 下载PDF
融合多种搜索策略的差分进化大规模优化算法 被引量:3
6
作者 罗家祥 倪晓晔 胡跃明 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期97-103,116,共8页
多峰、高维的大规模优化问题是当前优化领域的研究热点.文中以协同进化算法为框架,提出了一种融合多种搜索策略的差分进化大规模优化算法.基于分解的思想,该算法首先利用自适应差分进化算子对子问题进行局部优化求解;然后引入基于模拟... 多峰、高维的大规模优化问题是当前优化领域的研究热点.文中以协同进化算法为框架,提出了一种融合多种搜索策略的差分进化大规模优化算法.基于分解的思想,该算法首先利用自适应差分进化算子对子问题进行局部优化求解;然后引入基于模拟退火的随机搜索机制提高算法的全局搜索能力,并结合局部搜索链对解空间进行深度搜索.采用大规模优化标准函数对算法进行测试,结果表明,文中所提出的算法相比现有算法在平均值和最优解上均取得了更好的优化结果. 展开更多
关键词 大规模优化 协同进化算法 模拟退火 差分进化 局部搜索
在线阅读 下载PDF
大规模优化问题的改进花朵授粉算法 被引量:5
7
作者 李煜 郑娟 刘景森 《计算机科学与探索》 CSCD 北大核心 2020年第8期1427-1440,共14页
花朵授粉算法(FPA)寻优结构新颖,寻优能力良好,但求解高维优化问题易陷入"维数灾难"。为提高FPA求解大规模优化问题的性能,提出一种改进花朵授粉算法(IFPA)。采用反向学习策略增加种群多样性,充分搜索解空间,提高初始种群质量... 花朵授粉算法(FPA)寻优结构新颖,寻优能力良好,但求解高维优化问题易陷入"维数灾难"。为提高FPA求解大规模优化问题的性能,提出一种改进花朵授粉算法(IFPA)。采用反向学习策略增加种群多样性,充分搜索解空间,提高初始种群质量;在自花授粉阶段,发挥当代最优位置的牵引作用,减少算法迭代代价,提高搜索效率,提出避免维间干扰的方法,采用逐维随机扰动策略对花粉个体进行更新,整体评价后接受更优解,提高了算法局部迭代质量。IFPA仅需3~5个种群个体即可达到满意的优化效果,15个测试函数在100、1000和5000维下的仿真结果表明:IFPA的求解精度大幅提高,收敛速度明显加快,鲁棒性强,与FPA、PSO和BA的对比表明,改进算法在处理不同类型大规模优化问题上是具有竞争力的。 展开更多
关键词 花朵授粉算法 反向学习 逐维随机扰动 维间干扰 大规模优化
在线阅读 下载PDF
云环境下求解大规模优化问题的协同差分进化算法 被引量:1
8
作者 谭旭杰 邓长寿 +2 位作者 吴志健 彭虎 朱鹊桥 《智能系统学报》 CSCD 北大核心 2018年第2期243-253,共11页
差分进化是一种求解连续优化问题的高效算法。然而差分进化算法求解大规模优化问题时,随着问题维数的增加,算法的性能下降,且搜索时间呈指数上升。针对此问题,本文提出了一种新的基于Spark的合作协同差分进化算法(SparkDECC)。SparkDEC... 差分进化是一种求解连续优化问题的高效算法。然而差分进化算法求解大规模优化问题时,随着问题维数的增加,算法的性能下降,且搜索时间呈指数上升。针对此问题,本文提出了一种新的基于Spark的合作协同差分进化算法(SparkDECC)。SparkDECC采用分治策略,首先通过随机分组方法将高维优化问题分解成多个低维子问题,然后利用Spark的弹性分布式数据模型,对每个子问题并行求解,最后利用协同机制得到高维问题的完整解。通过在13个高维测试函数上进行的对比实验和分析,实验结果表明算法加速明显且可扩展性好,验证了SparkDECC的有效性和适用性。 展开更多
关键词 差分进化 大规模优化 协同进化 弹性分布式数据集 云计算
在线阅读 下载PDF
大规模优化系统层次型分解的一种方法 被引量:1
9
作者 彭立焱 陈柏鸿 +1 位作者 钟毅芳 刘继红 《华中理工大学学报》 CSCD 北大核心 2000年第6期89-91,共3页
解决大规模优化问题的一个有效途径是分解协调法 .在总结优化任务分解两种方法的基础上 ,提出一种层次型任务分解的策略 ,建立了任务分解的模型 ,并结合数学规划的算法进行求解 .实例说明所建立的任务分解模型的合理性 ,分枝定界算法能... 解决大规模优化问题的一个有效途径是分解协调法 .在总结优化任务分解两种方法的基础上 ,提出一种层次型任务分解的策略 ,建立了任务分解的模型 ,并结合数学规划的算法进行求解 .实例说明所建立的任务分解模型的合理性 ,分枝定界算法能有效地减少搜索空间 ,得到较好的分解结果 . 展开更多
关键词 优化设计 任务分解 层次型分解 大规模优化系统
在线阅读 下载PDF
求解大规模优化问题的改进正弦余弦算法
10
作者 张超 杨忆 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2022年第6期684-692,共9页
针对正弦余弦算法(sine cosine algorithm,SCA)在求解大规模优化问题时收敛精度低、收敛速度慢和易陷入“维数灾难”的不足,提出一种带Lévy飞行的正弦余弦算法(sine cosine algorithm with Lévy flight,SCAL).SCAL算法通过将L... 针对正弦余弦算法(sine cosine algorithm,SCA)在求解大规模优化问题时收敛精度低、收敛速度慢和易陷入“维数灾难”的不足,提出一种带Lévy飞行的正弦余弦算法(sine cosine algorithm with Lévy flight,SCAL).SCAL算法通过将Lévy飞行分布与正弦余弦种群个体位置向量进行对应元素相乘运算,使Lévy飞行分布的特征和信息融入正弦余弦种群个体信息中,使其拥有Lévy飞行随机游走的特性,增强了个体局部开发和逃离局部极值的能力;采用基于空间距离的非线性参数调整方法,平衡算法的局部开发和全局搜索,提高了算法的收敛速度.在14个经典测试函数上,维度分别为100、1 000和5 000维时,与SCA、花授粉算法(flower pollination algorithm,FPA)、粒子群优化(particle swarm optimization,PSO)算法、麻雀搜索算法(sparrow search algorithm,SSA)和鲸鱼优化算法(whale optimization algorithm,WOA)5种群体智能算法进行仿真对比实验.结果表明,SCAL算法在收敛精度、收敛速度和鲁棒性上较5种群体智能算法优势明显.与解决大规模优化问题的改进狼群算法(improved wolf pack algorithm,IWPA)、改进花授粉算法(improved flower pollination algorithm,IFPA)、鲸鱼算法的两种改进版本IWOA(improved whale optimization algorithm)和MWOA(modified whale optimization algorithm)进行比较,发现SCAL的整体寻优结果优于对比算法,在求解大规模优化问题上具有显著优势和竞争力. 展开更多
关键词 人工智能 正弦余弦算法 大规模优化问题 Lévy飞行 基于距离的非线性参数调整 收敛速度 收敛精度
在线阅读 下载PDF
求解大规模优化问题的有限内存SR-1方法
11
作者 吴淦洲 《广东石油化工学院学报》 2010年第6期71-73,共3页
给出了求解大规模优化问题的有限内存SR-1方法,与传统的有限内存BFGS方法相比较,该方法能进一步的节省计算机的内存,更适合用于大规模的优化问题。
关键词 大规模优化问题 有限内存方法 对称秩一校正公式
在线阅读 下载PDF
基于决策变量分组的粒子群算法求解大规模优化问题 被引量:3
12
作者 白晓慧 何小娟 +2 位作者 孙超利 时振涛 张国晨 《宁夏师范学院学报》 2020年第4期50-56,共7页
针对社会学习粒子群算法在求解大规模优化问题时存在的收敛速度慢以及种群多样性缺失等问题,提出一种基于决策变量分组的粒子群算法.根据决策变量间的相关性对决策变量分组,提高算法的收敛速度.采用反向学习策略,通过生成反向解,提高算... 针对社会学习粒子群算法在求解大规模优化问题时存在的收敛速度慢以及种群多样性缺失等问题,提出一种基于决策变量分组的粒子群算法.根据决策变量间的相关性对决策变量分组,提高算法的收敛速度.采用反向学习策略,通过生成反向解,提高算法的全局寻优能力.采用CEC2010测试函数集对本文算法进行测试,仿真结果与已有典型算法进行对比,验证了本文算法的有效性. 展开更多
关键词 决策变量分组 反向学习 大规模优化问题
在线阅读 下载PDF
惯性分组和重叠特征选择辅助的昂贵大规模优化算法
13
作者 邓传义 孙超利 +2 位作者 刘晓彤 张晓红 李春鹏 《郑州大学学报(工学版)》 CAS 北大核心 2023年第5期32-39,共8页
昂贵大规模优化问题存在着决策变量之间高度耦合、求解容易陷入局部最优以及目标评价昂贵等问题,导致在资源有限的情况下很难获得全局最优解。为此,基于合作型协同演化策略提出了一种惯性分组和重叠特征选择的方法来辅助求解昂贵大规模... 昂贵大规模优化问题存在着决策变量之间高度耦合、求解容易陷入局部最优以及目标评价昂贵等问题,导致在资源有限的情况下很难获得全局最优解。为此,基于合作型协同演化策略提出了一种惯性分组和重叠特征选择的方法来辅助求解昂贵大规模优化问题。首先,采用重叠特征选择技术将一个大规模优化问题分解为若干个低维的重叠子问题,并对每一个子问题进行独立的代理模型辅助的优化搜索。其次,将每个子问题搜索获得的潜力个体合成一个完整的解,对其使用昂贵目标函数进行评价。再次,算法还采用惯性分组技术控制优化过程中重新分组的频率以延长分组方案的开发周期,从而提升优化效果。最后,为了测试所提算法的性能,将其与求解昂贵大规模问题的3种优化算法在CEC2013的15个基准函数上获得的实验结果进行了对比。结果表明:所提算法在求解昂贵大规模优化问题上具有一定的竞争力,尤其适用于求解部分可分离、重叠或完全不可分离等问题。 展开更多
关键词 大规模优化 昂贵问题 重叠特征选择 惯性分组 代理模型 合作型协同演化
在线阅读 下载PDF
大规模优化设计在HAJIF系统中的实现 被引量:2
14
作者 王立凯 郭瑜超 罗利龙 《工程与试验》 2016年第3期89-93,共5页
针对分析模型精细化带来的大规模变量结构优化设计问题,深入系统地研究了大规模结构优化设计求解理论,并在HAJIF(航空结构强度分析与优化设计软件系统)中予以实现。HAJIF是一个十分有用的分析及优化软件,然而随着工程问题的日益庞大,该... 针对分析模型精细化带来的大规模变量结构优化设计问题,深入系统地研究了大规模结构优化设计求解理论,并在HAJIF(航空结构强度分析与优化设计软件系统)中予以实现。HAJIF是一个十分有用的分析及优化软件,然而随着工程问题的日益庞大,该系统表现出设计规模受限的技术瓶颈,从而限制了它的广泛应用。本文通过一系列的理论改进突破了HAJIF系统中的一些关键问题,使得当前系统可处理设计变量达到10万量级。这些方法包括约束删除、约束区域化、变量处理、敏度分析等。 展开更多
关键词 大规模结构优化 解析法 约束分区处理 数学规划法
在线阅读 下载PDF
一种大规模优化问题的邻近随机L-BFGS方法 被引量:1
15
作者 周倩 罗贤兵 《贵州大学学报(自然科学版)》 2018年第3期24-27,共4页
本文针对一类机器学习中的大规模优化问题,在凸非光滑的假设条件下,提出了一种新的邻近随机L-BFGS方法,它具有很好的扩展性和鲁棒性。文中分析了该数值方法的线性收敛性,并给出了数值算例,数值算例检验了算法的有效性和收敛性。
关键词 大规模优化问题 随机 L-BFGS方法 邻近
在线阅读 下载PDF
求解大规模优化问题的分布式并行方法
16
作者 余红蕾 《信阳农林学院学报》 2019年第1期116-120,共5页
针对大规模的优化问题,提出一种复杂度低且能快速收敛的分布式并行方法。由于计算Hessian矩阵及其逆矩阵会带来巨大的计算和存储开销,利用内点法或牛顿法求解大规模问题并不可行;大规模优化问题通常采用基于梯度或基于分解的方法进行求... 针对大规模的优化问题,提出一种复杂度低且能快速收敛的分布式并行方法。由于计算Hessian矩阵及其逆矩阵会带来巨大的计算和存储开销,利用内点法或牛顿法求解大规模问题并不可行;大规模优化问题通常采用基于梯度或基于分解的方法进行求解。传统的方法具有较高的复杂度的算法,因此笔者提出了一种新的具有更快收敛速度的原对偶方法,每次迭代仅需要进行简单的梯度更新,从而降低复杂度。 展开更多
关键词 大规模优化 梯度法 收敛速率
在线阅读 下载PDF
基于协同进化策略的大规模昂贵优化算法
17
作者 付国霞 《信息技术与信息化》 2024年第10期85-88,共4页
随着工程或者科学问题的复杂化,优化问题的维度日益增高,导致有些问题评价一次候选解的时间很长,而进化算法在获得最优解的过程中需要进行大量的目标函数评价,因此其无法直接应用于求解大规模昂贵优化问题。代理模型辅助的进化算法可以... 随着工程或者科学问题的复杂化,优化问题的维度日益增高,导致有些问题评价一次候选解的时间很长,而进化算法在获得最优解的过程中需要进行大量的目标函数评价,因此其无法直接应用于求解大规模昂贵优化问题。代理模型辅助的进化算法可以有效地解决昂贵优化问题,但是随着问题维度的增高,训练一个准确的代理模型需要的样本也会增多,这对于大规模问题显然是难以完成的。为此,利用随机分组将大规模优化问题分成若干个低维度的子问题,通过代理模型对每个子问题进行优化,以此不断迭代搜索得到最优解。为了验证算法的有效性,在CEC'2013的15个基准测试问题上进行了测试,实验结果表明,所提出的算法在求解大规模昂贵优化问题上效果十分显著。 展开更多
关键词 大规模优化问题 代理模型 昂贵问题 随机分组 协同进化 RBFN
在线阅读 下载PDF
基于自变量简约的大规模稀疏多目标优化 被引量:1
18
作者 丘雪瑶 辜方清 《计算机应用研究》 CSCD 北大核心 2024年第6期1663-1668,共6页
现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法... 现有的大多数进化算法在求解大规模优化问题时性能会随决策变量维数的增长而下降。通常,多目标优化的Pareto有效解集是自变量空间的一个低维流形,该流形的维度远小于自变量空间的维度。鉴于此,提出一种基于自变量简约的多目标进化算法求解大规模稀疏多目标优化问题。该算法通过引入局部保持投影降维,保留原始自变量空间中的局部近邻关系,并设计一个归档集,将寻找到的非劣解存入其中进行训练,以提高投影的准确性。将该算法与四种流行的多目标进化算法在一系列测试问题和实际应用问题上进行了比较。实验结果表明,所提算法在解决稀疏多目标问题上具有较好的效果。因此,通过自变量简约能降低问题的求解难度,提高算法的搜索效率,在解决大规模稀疏多目标问题方面具有显著的优势。 展开更多
关键词 局部保持投影 进化算法 大规模稀疏多目标优化问题
在线阅读 下载PDF
多策略大规模多目标优化算法
19
作者 裴倩如 邹锋 陈得宝 《计算机系统应用》 2024年第11期142-156,共15页
在解决大规模多目标优化问题(LSMOP)时,随着决策变量维数的增加会使得MOEA/D算法在决策空间扩展性差且容易收敛于局部最优.针对这一问题,提出了一种大规模多策略MOEA/D算法(MSMOEA/D). MSMOEA/D算法在优化过程中引入了一种基于自动编码... 在解决大规模多目标优化问题(LSMOP)时,随着决策变量维数的增加会使得MOEA/D算法在决策空间扩展性差且容易收敛于局部最优.针对这一问题,提出了一种大规模多策略MOEA/D算法(MSMOEA/D). MSMOEA/D算法在优化过程中引入了一种基于自动编码器的混合初始化策略,以改善初始种群的覆盖程度,从而促进全局搜索.然后,提出一种基于聚合函数值的邻域调整策略,通过调整邻域大小,能够在搜索过程中更精确地控制搜索范围,避免因邻域过大或过小而导致的搜索效率低下.此外,在优化过程中采用了基于非支配排序的变异选择策略.不同的子问题根据位于非支配排序第1层的个体数量选择变异策略,避免种群陷入局部最优,提高算法的整体性能.最后,使用LSMOP和DTLZ测试问题对MSMOEA/D算法和其他已有算法进行了评估.实验结果证实了MSMOEA/D算法解决大规模多目标优化问题的有效性. 展开更多
关键词 大规模多目标优化 MOEA/D 自动编码器 邻域大小 变异策略
在线阅读 下载PDF
求解大规模优化问题的改进鲸鱼优化算法 被引量:118
20
作者 龙文 蔡绍洪 +2 位作者 焦建军 唐明珠 伍铁斌 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2017年第11期2983-2994,共12页
提出一种基于非线性收敛因子的改进鲸鱼优化算法(简记为IWOA)用于求解大规模复杂优化问题.为算法全局搜索奠定基础,在搜索空间中利用对立学习策略进行初始化鲸鱼个体位置;设计一种随进化迭代次数非线性变化的收敛因子更新公式以协调WOA... 提出一种基于非线性收敛因子的改进鲸鱼优化算法(简记为IWOA)用于求解大规模复杂优化问题.为算法全局搜索奠定基础,在搜索空间中利用对立学习策略进行初始化鲸鱼个体位置;设计一种随进化迭代次数非线性变化的收敛因子更新公式以协调WOA算法的探索和开发能力;对当前最优鲸鱼个体执行多样性变异操作以减少算法陷入局部最优的概率.选取15个大规模(200维、500维和1000维)标准测试函数进行数值实验,结果表明,IWOA在求解精度和收敛速度方面明显优于其他对比算法. 展开更多
关键词 鲸鱼优化算法 对立学习策略 非线性收敛因子 大规模优化问题 多样性变异
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部