期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
具有纳米级表面裂纹的Si薄膜裂纹扩展模拟
1
作者 许昌华 李梦一 +3 位作者 茅寅 廖鹏飞 戴隆超 唐纯 《传感器与微系统》 CSCD 北大核心 2023年第7期23-27,共5页
以柔性材料为基础结合微纳米加工与集成技术,设计制造可实现各种功能的柔性电子元器件成为了研究的热点,其中作为重要组成的硅备受关注。普遍认为材料的宏观变形行为与微观材料变形机制有关,因此本文旨在基于分子动力学(MD)模拟研究弯... 以柔性材料为基础结合微纳米加工与集成技术,设计制造可实现各种功能的柔性电子元器件成为了研究的热点,其中作为重要组成的硅备受关注。普遍认为材料的宏观变形行为与微观材料变形机制有关,因此本文旨在基于分子动力学(MD)模拟研究弯曲下包含半椭球表面裂纹的硅薄膜模型的裂纹扩展,主要通过改变裂纹长轴与薄膜宽度的比例以及四点弯曲的加载速率来研究其与薄膜挠度变化的关系。实验表明,随着比值的增加,临界挠度先减小后增大。而在加载速率对薄膜临界挠度影响的实验中,发现随着速率增大,加载过程中会出现传输迟滞,模型需要更大的挠度才能达到断裂要求。 展开更多
关键词 单晶硅 裂纹扩展 大规模原子分子并行模拟 表面裂纹
在线阅读 下载PDF
Recent Implementations in LASP 3.0:Global Neural Network Potential with Multiple Elements and Better Long-Range Description 被引量:1
2
作者 Pei-lin Kang Cheng Shang Zhi-pan Liu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第5期583-590,I0003,共9页
LASP(large-scale atomistic simulation with neural network potential)software developed by our group since 2018 is a powerful platform(www.lasphub.com)for performing atomic simulation of complex materials.The software ... LASP(large-scale atomistic simulation with neural network potential)software developed by our group since 2018 is a powerful platform(www.lasphub.com)for performing atomic simulation of complex materials.The software integrates the neural network(NN)potential technique with the global potential energy surface exploration method,and thus can be utilized widely for structure prediction and reaction mechanism exploration.Here we introduce our recent update on the LASP program version 3.0,focusing on the new functionalities including the advanced neuralnetwork training based on the multi-network framework,the newly-introduced S^(7) and S^(8) power type structure descriptor(PTSD).These new functionalities are designed to further improve the accuracy of potentials and accelerate the neural network training for multipleelement systems.Taking Cu-C-H-O neural network potential and a heterogeneous catalytic model as the example,we show that these new functionalities can accelerate the training of multi-element neural network potential by using the existing single-network potential as the input.The obtained double-network potential Cu CHO is robust in simulation and the introduction of S^(7) and S^(8) PTSDs can reduce the root-mean-square errors of energy by a factor of two. 展开更多
关键词 Large-scale atomistic simulation with neural network potential Machine learning Neural network Structure descriptor Simulation software
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部