期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于并行深度卷积神经网络的舰船通信异常数据检测研究
被引量:
3
1
作者
邓雪阳
邓达平
苏万靖
《舰船科学技术》
北大核心
2023年第15期119-122,共4页
为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Soft...
为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Softmax分类函数得出舰船通信异常数据特征,输出舰船通信异常数据检测结果。实验结果表明:该方法可有效实现大规模舰船通信异常数据检测,其加速比最高,并行效果最优;具有较强的大规模舰船通信数据集检测能力,提高大规模舰船通信异常数据检测效果。
展开更多
关键词
并行深度
卷积神经网络
大规模舰船
通信异常数据
检测方法
数据预处理
在线阅读
下载PDF
职称材料
题名
基于并行深度卷积神经网络的舰船通信异常数据检测研究
被引量:
3
1
作者
邓雪阳
邓达平
苏万靖
机构
江西理工大学信息工程学院
赣南科技学院
出处
《舰船科学技术》
北大核心
2023年第15期119-122,共4页
基金
江西省教育厅科学技术研究项目(GJJ218504)
大学生创新创业训练计划项目(202213434005)。
文摘
为了提高通信异常数据检测效果,设计基于并行深度卷积神经网络算法的大规模舰船通信异常数据检测方法。采集大规模舰船通信数据,采用小波变换对数据实施降噪处理,将降噪后数据输入并行深度卷积神经网络中,经过模型训练提取特征,利用Softmax分类函数得出舰船通信异常数据特征,输出舰船通信异常数据检测结果。实验结果表明:该方法可有效实现大规模舰船通信异常数据检测,其加速比最高,并行效果最优;具有较强的大规模舰船通信数据集检测能力,提高大规模舰船通信异常数据检测效果。
关键词
并行深度
卷积神经网络
大规模舰船
通信异常数据
检测方法
数据预处理
Keywords
parallel depth
convolutional neural network
large scale ships
abnormal communication data
detection method
data preprocessing
分类号
TP393 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于并行深度卷积神经网络的舰船通信异常数据检测研究
邓雪阳
邓达平
苏万靖
《舰船科学技术》
北大核心
2023
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部