Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficienc...Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2.展开更多
The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to s...The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.展开更多
Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combi...Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.展开更多
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM...This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.展开更多
文摘Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2.
文摘The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.
文摘Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.
基金supported by the National Natural Science Foundation of China(No.51322604)
文摘This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.