期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估
1
作者 肖乾 汪寒俊 +5 位作者 朱海燕 王文静 朱恩豪 叶小芬 魏昱洲 李林 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1181-1189,1249,1250,共11页
为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络... 为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络聚类模型中,建立性能退化评估模型;其次,将测试样本按同样的方式提取特征向量,输入到建立好的模型中评估轴承性能退化状态;然后,选取轴承全寿命疲劳试验进行分析,并选择特征优选和模糊C均值聚类算法进行对比;最后,根据LVQ神经网络聚类算法确定训练样本中正常状态和失效状态的聚类中心,建立性能退化评估模型。结果表明:将小波包奇异谱熵和LVQ神经网络聚类算法相结合,能较好区分齿轮箱轴承不同的退化状态,准确表现轴承性能退化曲线;通过隶属度函数计算隶属度作为性能退化评价指标,可以对性能退化状态进行定量表征;通过对时域指标和频域指标特征优选进行对比,验证了本研究方法更加有效,对早期退化更敏感,能及时发现早期退化并且能对退化程度进行准确评估。 展开更多
关键词 交通工程 齿轮箱振动加速度 信号仿真 小波包奇异谱熵 学习向量量化神经网络聚类 性能退化评估
在线阅读 下载PDF
基于小波包奇异谱熵和WOA-SVM的GIS放电故障诊断 被引量:1
2
作者 臧旭 龚正朋 +3 位作者 俞文帅 张甜瑾 杨嵩 李呈营 《电机与控制应用》 2024年第9期60-69,共10页
为实现气体绝缘开关设备(GIS)放电故障诊断并提高诊断正确率,提出了一种基于小波包奇异谱熵和鲸鱼优化算法优化支持向量机(WOA-SVM)的GIS放电故障诊断方法。首先,提取GIS放电时的特高频信号的小波包奇异谱熵作为特征向量;然后,采用WOA... 为实现气体绝缘开关设备(GIS)放电故障诊断并提高诊断正确率,提出了一种基于小波包奇异谱熵和鲸鱼优化算法优化支持向量机(WOA-SVM)的GIS放电故障诊断方法。首先,提取GIS放电时的特高频信号的小波包奇异谱熵作为特征向量;然后,采用WOA寻优找到SVM的最优参数,建立准确的分类模型;最后,通过试验模拟GIS典型的放电故障,采用网格搜索参数的SVM、粒子群优化参数的SVM以及所提的WOA-SVM三种算法对GIS放电故障类型进行识别。结果表明所提的WOA-SVM算法故障识别正确率更高、适应度更好且收敛速度更快。 展开更多
关键词 鲸鱼优化算法 GIS放电故障 SVM参数寻优 特高频 小波包奇异谱熵
在线阅读 下载PDF
结合小波包奇异谱熵和SVDD的滚动轴承性能退化评估 被引量:13
3
作者 周建民 徐清瑶 +1 位作者 张龙 李鹏 《机械科学与技术》 CSCD 北大核心 2016年第12期1882-1887,共6页
针对设备的视情维修,提出一种将小波包奇异谱熵和支持向量数据描述(SVDD)相结合的滚动轴承性能退化评估方法。先提取轴承全寿命周期内振动信号的小波包奇异谱熵作为轴承状态的特征矢量,然后以轴承正常状态下的特征矢量训练SVDD,得到正... 针对设备的视情维修,提出一种将小波包奇异谱熵和支持向量数据描述(SVDD)相结合的滚动轴承性能退化评估方法。先提取轴承全寿命周期内振动信号的小波包奇异谱熵作为轴承状态的特征矢量,然后以轴承正常状态下的特征矢量训练SVDD,得到正常状态下的基准超球体,再计算轴承全寿命周期内的特征矢量与基准超球体之间的相对距离,作为性能退化过程的定量评估指标,并对失效阈值和早期故障阈值进行设定。结果表明,与基于小波包和SVDD的性能退化评估方法相比,该方法的早期故障检测能力更强,对轴承性能退化各个阶段的描述更加准确。最后,利用基于EMD的Hilbert包络解调方法对评估结果的正确性进行了验证。 展开更多
关键词 滚动轴承 小波包奇异谱熵 支持向量数据描述 性能退化评估 包络解调
在线阅读 下载PDF
基于自适应TQWT与小波包奇异谱熵的滚动轴承早期故障诊断 被引量:9
4
作者 谢锋云 刘慧 +1 位作者 胡旺 姜永奇 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期714-722,共9页
滚动轴承早期故障诊断可有效地保证机械设备的运行安全,针对滚动轴承早期故障特征微弱,故障特征提取不佳的问题,提出可调品质因子小波变换(Tunable Q-factor wavelet transform,TQWT)与小波包奇异谱熵相结合提取特征的滚动轴承早期故障... 滚动轴承早期故障诊断可有效地保证机械设备的运行安全,针对滚动轴承早期故障特征微弱,故障特征提取不佳的问题,提出可调品质因子小波变换(Tunable Q-factor wavelet transform,TQWT)与小波包奇异谱熵相结合提取特征的滚动轴承早期故障诊断方法。针对滚动轴承早期故障信号的冲击性与周期性特征,提出峭谱积(峭度和包络谱峰值因子的乘积,KEc)的新指标。以KEc为优化指标,采用网格搜索法确定TQWT最佳的品质因子Q,同时以中心频率比为优化指标,确定最佳的分解层数J。通过最佳参数Q和J对原始信号进行TQWT分解并单支重构,选择KEc最大的重构分量作为最佳分量。提取最佳分量的小波包奇异谱熵值作为故障特征向量,最后运用支持向量机(SVM)进行模式识别并进行早期故障诊断。为验证所提方法的有效性,以XJTU-SY滚动轴承加速寿命试验平台研究对象,运用加速度传感器获取的试验数据集进行验证,识别结果准确率为94.5%。同时,与优化指标为峭度等的SVM识别结果进行比较,所提方法识别率提高了约1%~7%。对比结果表明,运用所提方法对滚动轴承早期故障进行识别,可以准确有效地诊断出轴承的故障类型,具有一定的实用价值。 展开更多
关键词 故障诊断 可调品质因子小波变换 小波包奇异谱熵 支持向量机 早期故障
在线阅读 下载PDF
基于小波包奇异谱熵和IWOA-ELM的列车轴承故障诊断 被引量:7
5
作者 王发令 吴佳敏 陈冠雄 《机电工程技术》 2023年第5期295-299,共5页
为了有效提高多工况下地铁列车滚动轴承故障诊断精度,基于轴承振动数据,提出一种基于小波包奇异谱熵和改进鲸鱼优化算法(IWOA)优化极限学习机(ELM)的故障诊断方法。针对轴承振动信号的非平稳性和非线性特点,采用小波包提取样本特征,使... 为了有效提高多工况下地铁列车滚动轴承故障诊断精度,基于轴承振动数据,提出一种基于小波包奇异谱熵和改进鲸鱼优化算法(IWOA)优化极限学习机(ELM)的故障诊断方法。针对轴承振动信号的非平稳性和非线性特点,采用小波包提取样本特征,使用奇异值分解提取小波包数据集的样本信息熵,获得样本特征集。其次,针对模型参数难以确定,优化速度慢且容易陷入局部最优问题,采用变异算子和混沌动态权重因子改进鲸鱼优化算法(WOA),使用IWOA优化ELM参数获得故障诊断模型。最后,使用美国凯斯西储大学的轴承故障数据验证了模型的可靠性和稳定性,在多工况下不同类型组合的300组测试样本中,模型诊断准确率为99.33%。同时与同一数据源的其他诊断模型进行对比验证模型的优越性。结果表明,基于小波包奇异谱熵和IWOA-ELM的轴承故障诊断模型诊断可靠性强、准确率高。 展开更多
关键词 滚动轴承 故障诊断 小波包奇异谱熵 改进鲸鱼优化算法 极限学习机
在线阅读 下载PDF
基于RBF神经网络与模糊评价的滚动轴承退化状态定量评估 被引量:7
6
作者 周建民 王发令 +2 位作者 张龙 李鹏 张臣臣 《机械设计与研究》 CSCD 北大核心 2019年第6期116-122,127,共8页
滚动轴承作为旋转机械最容易发生故障的零部件之一,对其进行性能状态评估,及早判断出故障情况并做出相应的维修策略具有重要的意义。首先对轴承早期无故障样本和同类轴承的失效样本的振动信号提取小波包奇异谱熵作为初始特征。其次,用... 滚动轴承作为旋转机械最容易发生故障的零部件之一,对其进行性能状态评估,及早判断出故障情况并做出相应的维修策略具有重要的意义。首先对轴承早期无故障样本和同类轴承的失效样本的振动信号提取小波包奇异谱熵作为初始特征。其次,用早期无故障样本特征和同类轴承失效样本特征建立径向基(RBF)神经网络模型,将已提取特征的轴承全寿命数据特征通过迭代的方式输入到RBF模型中。为了得到有界限的性能退化评估指标,提高性能评估准确率,将RBF模型输出结果输入到隶属度函数,计算隶属度,以此作为性能退化评估指标。使用箱线图设置自适应阈值,确定轴承早期失效阈值。最后用包络解调对结果进行验证。实验表明,提出的性能退化评估方法早期故障检测能力强,得到的结论与轴承加速疲劳试验得到的结果保持一致。 展开更多
关键词 滚动轴承 小波包奇异谱熵 RBF神经网络 模糊评价 箱线图 包络解调
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部