期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
基于改进合成少数类过采样技术的非概率可靠性指标解 被引量:1
1
作者 张梦 陈旭勇 +1 位作者 彭元林 李书雅 《武汉工程大学学报》 CAS 2024年第2期231-236,共6页
当结构的功能函数呈现高度非线性、极限状态曲面为多区域的情形时,现有算法无法有效求解非概率可靠性指标,为解决此类问题,将合成少数类过采样技术(SMOTE)进行改进,提出了基于改进SMOTE算法的非概率可靠性指标解法。首先基于非概率可靠... 当结构的功能函数呈现高度非线性、极限状态曲面为多区域的情形时,现有算法无法有效求解非概率可靠性指标,为解决此类问题,将合成少数类过采样技术(SMOTE)进行改进,提出了基于改进SMOTE算法的非概率可靠性指标解法。首先基于非概率可靠性指标的几何意义,将样本分类策略、超球限制策略与标准SMOTE算法相结合,提出了改进SMOTE算法来进一步提升算法在极限状态曲面附近的采样效率;然后结合改进SMOTE算法在标准化空间中高精度的拟合局部极限状态曲面,进而搜索得到非概率可靠性指标;最后给出了基于改进SMOTE算法的非概率可靠性指标解的主要流程。数值算例表明,当极限状态曲面呈现局部闭合、多区域的特点时,改进后的SMOTE算法可以高效地获取位于极限状态曲面附近的样本点,进而高精度地拟合极限状态曲面。将本文方法的计算结果与解析解对比,相对误差远远小于工程中的最大误差限值5%,说明改进SMOTE算法能够较好地处理高度非线性功能函数,验证了所提算法的有效性和实用性。 展开更多
关键词 非概率可靠性指标 合成少数过采样技术 样本策略 超球限制策略 极限状态曲面
在线阅读 下载PDF
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
2
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 少数样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
基于新型采样技术的非平衡数据分类方法 被引量:1
3
作者 刘子桐 刘振远 +1 位作者 庞娜 马铭 《北华大学学报(自然科学版)》 CAS 2024年第5期694-700,共7页
在一些现实场景中,数据不平衡问题普遍存在,严重影响模型的预测结果。合成少数类过采样技术(Synthetic Minority Over-Sampling Technique,SMOTE)是解决非平衡分类问题的一种方法,但存在局限性。针对数据中的类不平衡问题,提出基于数据... 在一些现实场景中,数据不平衡问题普遍存在,严重影响模型的预测结果。合成少数类过采样技术(Synthetic Minority Over-Sampling Technique,SMOTE)是解决非平衡分类问题的一种方法,但存在局限性。针对数据中的类不平衡问题,提出基于数据分布和聚类加权的改进SMOTE随机森林分类算法(Random Forest Using SMOTE Based on Data Distribution and Cluster Weighting,DCSMOTE-RF)。该算法通过获取样本分布信息,将少数类样本划分到不同簇群,根据簇群信息量为每个区域分配不同合成份额;少数类样本结合自身权重,生成相应规模的目标样本;通过基于随机森林学习评价训练数据。10组非平衡数据集仿真试验结果表明,DCSMOTE-RF算法对非平衡数据具有较好的预测效果。 展开更多
关键词 非平衡分 合成少数过采样技术 随机森林
在线阅读 下载PDF
基于带多数类权重的少数类过采样技术和随机森林的信用评估方法 被引量:13
4
作者 田臣 周丽娟 《计算机应用》 CSCD 北大核心 2019年第6期1707-1712,共6页
针对信用评估中最为常见的不均衡数据集问题以及单个分类器在不平衡数据上分类效果有限的问题,提出了一种基于带多数类权重的少数类过采样技术和随机森林(MWMOTE-RF)结合的信用评估方法。首先,在数据预处理过程中利用MWMOTE技术增加少... 针对信用评估中最为常见的不均衡数据集问题以及单个分类器在不平衡数据上分类效果有限的问题,提出了一种基于带多数类权重的少数类过采样技术和随机森林(MWMOTE-RF)结合的信用评估方法。首先,在数据预处理过程中利用MWMOTE技术增加少数类别样本的样本数;然后,在预处理后的较平衡的新数据集上利用监督式机器学习算法中的随机森林算法对数据进行分类预测。使用受测者工作特征曲线下面积(AUC)作为分类评价指标,在UCI机器学习数据库中的德国信用卡数据集和某公司的汽车违约贷款数据集上的仿真实验表明,在相同数据集上,MWMOTE-RF方法与随机森林方法和朴素贝叶斯方法相比,AUC值分别提高了18%和20%。与此同时,随机森林方法分别与合成少数类过采样技术(SMOTE)方法和自适应综合过采样(ADASYN)方法结合,MWMOTE-RF方法与它们相比,AUC值分别提高了1.47%和2.34%,从而验证了所提方法的有效性及其对分类器性能的优化。 展开更多
关键词 不平衡数据集 机器学习 带多数权重的少数过采样技术 随机森林 信用评估
在线阅读 下载PDF
考虑不同天气类型样本的光伏功率日内预测模型 被引量:2
5
作者 付雪姣 吕可欣 +4 位作者 吴林林 刘辉 张扬帆 李奕霖 叶林 《分布式能源》 2024年第2期39-47,共9页
太阳能具有清洁、安全、可再生的优点,光伏发电可减轻资源消耗,助力可持续发展,然而光伏功率易受天气影响,针对不同天气类型下光伏功率的预测也是一个研究难点。该研究着手于在不同天气类型下应用人工少数类过采样法(synthetic minority... 太阳能具有清洁、安全、可再生的优点,光伏发电可减轻资源消耗,助力可持续发展,然而光伏功率易受天气影响,针对不同天气类型下光伏功率的预测也是一个研究难点。该研究着手于在不同天气类型下应用人工少数类过采样法(synthetic minority over-sampling technique,SMOTE)和机器学习进行光伏功率预测。首先,通过皮尔逊相关系数法选择出对光伏功率影响最大的气象因子;然后,根据重要程度较大的气象因子计算日照时数,通过给日照时数设定阈值进行划分,将天气分类为晴天、多云或阴天、覆雪,再通过SMOTE技术对各种天气类型下的样本进行扩充;最后,通过多种机器学习算法分别针对不同天气场景以及数据扩充前后构建光伏功率预测模型。通过案例分析可知,所提算法能对不同天气类型进行划分,并为不同天气类型下光伏功率预测存在的样本不平衡问题提供了一种解决方案,提升了不同天气场景下光伏功率的预测精度。 展开更多
关键词 光伏发电 功率预测 机器学习 人工少数过采样法(smote) 天气
在线阅读 下载PDF
HSMOTE-AdaBoost:改进混合边界重采样集成分类算法
6
作者 李静 刘姜 +1 位作者 倪枫 李笑语 《智能计算机与应用》 2023年第7期7-14,共8页
处理类不平衡问题时,已有的采样方法存在易受噪声影响和忽略边界样本的问题,尤其是忽略多数类样本的类内差异,位于边界的样本实例非常容易被错分,而这些样本对划分决策边界具有重要作用。将SMOTE过采样和RUS随机欠采样方法结合并进行改... 处理类不平衡问题时,已有的采样方法存在易受噪声影响和忽略边界样本的问题,尤其是忽略多数类样本的类内差异,位于边界的样本实例非常容易被错分,而这些样本对划分决策边界具有重要作用。将SMOTE过采样和RUS随机欠采样方法结合并进行改进,提出混合边界重采样算法(HSMOTE-AdaBoost)。HSMOTE-AdaBoost算法首先对少数类运用SMOTE过采样,提高数据的平衡度;再使用K近邻算法清除噪声和采样方法产生的重叠实例;同时,基于与少数类样本的平均欧氏距离识别并保留边界多数类样本,然后对剩余的数据进行随机欠采样;最后,利用AdaBoost算法的优势,对平衡后的数据集进行多次迭代训练得到最终的分类模型。仿真实验结果表明,与传统的SMOTE-Boost、RUS-Boost、PC-Boost及改进后的算法KSMOTE-AdaBoost相比,该分类模型在不平衡数据集上的所有性能指标F-measure,G-mean,AUC值分别最高提升了22.97%,13.88%和10.03%,具有更优的分类效果。 展开更多
关键词 不平衡 smote过采样 ADABOOST算法 噪声样本 边界样本
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:1
7
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
SMOTE类算法研究综述 被引量:4
8
作者 王晓霞 李雷孝 林浩 《计算机科学与探索》 CSCD 北大核心 2024年第5期1135-1159,共25页
合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细... 合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细阐述了SMOTE方法的基本原理,然后主要从数据级、算法级两个层面系统性地梳理分析SMOTE类算法,并介绍数据级和算法级混合改进的新思路。数据级改进是在预处理时通过不同操作删除或添加数据来平衡数据分布;算法级改进不会改变数据分布,主要通过修改或创建算法来加强对少数类样本的关注度。二者相比,数据级方法应用受限更少,算法级改进的算法鲁棒性普遍更高。为了更全面地提供SMOTE类算法的基础研究材料,最后列出常用数据集、评价指标,给出未来可能尝试进行的研究思路,以更好地应对不平衡数据问题。 展开更多
关键词 不平衡数据 合成少数过采样技术(smote) 过采样 监督学习
在线阅读 下载PDF
小样本下基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断
9
作者 葛平淑 王朝阳 +3 位作者 王阳 张涛 薛红涛 夏晨迪 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期1-9,共9页
轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据... 轮毂电机复杂多变的运行环境可能导致轴承故障而危及电动车辆行驶安全,为解决传统故障诊断方法在小样本条件下识别精度低的问题,提出一种基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断方法。首先,通过合成少数过采样技术(SMOTE)扩展训练数据集,生成与真实样本分布相似的故障样本,并使用主成分分析(PCA)优化其时域和频域的特征。然后,通过引入非线性收敛因子和Levy飞行策略改进传统的灰狼优化算法(GWO),使用改进的灰狼优化算法(IGWO)优化随机森林(RF)模型的参数。最后,基于SMOTE-IGWO-RF的轮毂电机轴承故障诊断模型实现故障状态的识别,并在轮毂电机试验台架上进行了实验验证。结果表明,所提出的轮毂电机轴承故障诊断方法在7种转速工况下平均准确率均超过96%,具有高精度和稳定性。与遗传算法(GA)、粒子群优化算法(PSO)、GWO优化RF相比,提出的IGWO-RF模型在3种小样本训练集下的诊断准确率均超过90%,且准确率均明显高于其他3个对比算法,能够有效实现小样本条件下的轮毂电机轴承故障诊断。 展开更多
关键词 轮毂电机 轴承 合成少数过采样技术(smote) 改进灰狼优化算法(IGWO) 随机森林(RF) 故障诊断
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:1
10
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
基于层次聚类改进SMOTE的过采样方法 被引量:3
11
作者 王圆方 《软件》 2020年第2期201-204,共4页
针对SMOTE算法在合成少数类新样本时存在的不足,提出了一种基于层次聚类算法改进的SMOTE过采样法H-SMOTE。该算法首先对少数类样本进行层次聚类,其次根据提出的簇密度分布函数,计算各个簇的簇密度,最后在各个簇中利用改进的SMOTE算法进... 针对SMOTE算法在合成少数类新样本时存在的不足,提出了一种基于层次聚类算法改进的SMOTE过采样法H-SMOTE。该算法首先对少数类样本进行层次聚类,其次根据提出的簇密度分布函数,计算各个簇的簇密度,最后在各个簇中利用改进的SMOTE算法进行过采样,提高合成样本的多样性,得到新的平衡数据集。通过对UCI数据集的实验表明,H-SMOTE算法的分类效果得到明显的提升。 展开更多
关键词 过采样 少数 层次聚 smote
在线阅读 下载PDF
基于SMOTE算法的腹膜透析患者合并重度贫血的预测模型构建
12
作者 燕雯雯 储杨敏 +1 位作者 束永兵 罗寅亮 《皖南医学院学报》 2025年第1期29-32,37,共5页
目的:探讨腹膜透析患者合并重度贫血的危险因素,并基于少数类样本合成过抽样技术(SMOTE)算法构建腹膜透析患者合并重度贫血的预测模型。方法:选取2020年1月~2022年10月六安市中医院诊治的212例腹膜透析患者作为研究对象。采用多因素Logi... 目的:探讨腹膜透析患者合并重度贫血的危险因素,并基于少数类样本合成过抽样技术(SMOTE)算法构建腹膜透析患者合并重度贫血的预测模型。方法:选取2020年1月~2022年10月六安市中医院诊治的212例腹膜透析患者作为研究对象。采用多因素Logistic回归分析筛选腹膜透析患者合并重度贫血的危险因素,应用SMOTE算法构建腹膜透析患者合并重度贫血的预测模型,并对其预测效能进行分析。结果:212例腹膜透析患者中有72例患者发生重度贫血,重度贫血的发生率为33.96%(72/212)。Logistic回归分析结果显示,血清铁降低、营养不良、未使用补血药物及C-反应蛋白(C-reactive protein,CRP)水平升高等是腹膜透析患者合并重度贫血的危险因素,铁蛋白升高、转铁蛋白升高是腹膜透析患者合并重度贫血的保护因素(P<0.05)。基于SMOTE算法的预警模型Logit(P)=1.266血钙+1.702血清铁+1.578营养不良+1.815未使用补血药物-0.115铁蛋白-2.687转铁蛋白+0.511CRP+12.199,H-L检验结果(决定系数R 2=0.187,P=0.924)提示基于SMOTE算法的预警模型拟合度良好。Logistic回归模型的ROC曲线下面积(AUC)为0.902(95%CI:0.860~0.945),基于SMOTE算法的预测模型的AUC为0.936(95%CI:0.911~0.962),基于SMOTE算法的预测模型的ROC曲线下面积高于Logistic回归模型(P<0.05)。结论:血清铁降低、营养不良、未使用补血药物及CRP等是腹膜透析患者合并重度贫血的危险因素,铁蛋白升高、转铁蛋白升高是腹膜透析患者合并重度贫血的保护因素,基于SMOTE算法的预警模型对腹膜透析患者合并重度贫血预测的准确性较高。 展开更多
关键词 腹膜透析 重度贫血 危险因素 少数样本合成过抽样技术
在线阅读 下载PDF
基于改进SMOTE的非平衡数据集分类研究 被引量:19
13
作者 王超学 潘正茂 +2 位作者 董丽丽 马春森 张星 《计算机工程与应用》 CSCD 2013年第2期184-187,245,共5页
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少... 针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。 展开更多
关键词 非平衡数据集 支持度 轮盘赌选择 合成少数过采样技术(smote)
在线阅读 下载PDF
基于主动学习SMOTE的非均衡数据分类 被引量:23
14
作者 张永 李卓然 刘小丹 《计算机应用与软件》 CSCD 北大核心 2012年第3期91-93,162,共4页
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALS... 少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 展开更多
关键词 主动学习 不平衡数据集 少数样本合成过采样技术 支持向量机
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:9
15
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(smote) 构造性覆盖算法(CCA)
在线阅读 下载PDF
基于SMOTE算法和条件生成对抗网络的到港航班延误分类预测 被引量:7
16
作者 刘博 卢婷婷 +1 位作者 张兆宁 张健斌 《科学技术与工程》 北大核心 2021年第34期14843-14852,共10页
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(condi... 由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(conditional generative adversarial nets,CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在4种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F_(1)-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著地提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。 展开更多
关键词 航班延误 非平衡数据集 合成少数过采样技术(smote)算法 条件生成对抗网络 XGBoost模型 问题
在线阅读 下载PDF
基于BSMOTE和逆转欠抽样的不均衡数据分类算法 被引量:4
17
作者 陈睿 张亮 +1 位作者 杨静 胡荣贵 《计算机应用研究》 CSCD 北大核心 2014年第11期3299-3303,共5页
针对传统分类器在数据不均衡的情况下分类效果不理想的缺陷,为提高分类器在不均衡数据集下的分类性能,特别是少数类样本的分类能力,提出了一种基于BSMOTE和逆转欠抽样的不均衡数据分类算法。该算法使用BSMOTE进行过抽样,人工增加少数类... 针对传统分类器在数据不均衡的情况下分类效果不理想的缺陷,为提高分类器在不均衡数据集下的分类性能,特别是少数类样本的分类能力,提出了一种基于BSMOTE和逆转欠抽样的不均衡数据分类算法。该算法使用BSMOTE进行过抽样,人工增加少数类样本的数量,然后通过优先去除样本中的冗余和噪声样本,使用逆转欠抽样方法逆转少数类样本和多数类样本的比例。通过多次进行上述抽样形成多个训练集合,使用Bagging方法集成在多个训练集合上获得的分类器来提高有效信息的利用率。实验表明,该算法较几种现有算法不仅能够提高少数类样本的分类性能,而且能够有效提高整体分类准确度。 展开更多
关键词 不均衡数据集 边界少数样本合成过抽样技术 逆转欠抽样技术 多分器集成
在线阅读 下载PDF
利用采样安全系数的多类不平衡过采样算法 被引量:4
18
作者 董明刚 刘明 敬超 《计算机科学与探索》 CSCD 北大核心 2020年第10期1776-1786,共11页
传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那... 传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那些会造成过度泛化的邻域分配一个较小的权重。然后考虑到样本点的全局特性,采用反向近邻采样安全系数防止新合成的样本点侵入到其他类别区域,减轻类别之间的重叠问题。最后以C4.5决策树作为基分类器,将SSCMIO算法与7种典型的过采样算法进行了对比实验。在16个公开的真实数据集上,SSCMIO算法在准确率、召回率、F-measure、MG、MAUC这5个指标上均能取得11个以上的最优值,在5个指标上最大提升分别是0.4818、0.3053、0.3420、0.2664、0.1307。实验结果表明SSCMIO算法相比其他7种算法可以取得更好的分类性能。 展开更多
关键词 采样安全系数 过采样 合成少数技术 不平衡问题
在线阅读 下载PDF
基于混合采样的非平衡数据分类算法 被引量:20
19
作者 吴艺凡 梁吉业 王俊红 《计算机科学与探索》 CSCD 北大核心 2019年第2期342-349,共8页
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector mac... 过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。 展开更多
关键词 非平衡 支持向量机(SVM) 少数样本过采样技术(smote) 超平面 混合采样
在线阅读 下载PDF
改进SMOTE的不平衡数据集成分类算法 被引量:33
20
作者 王忠震 黄勃 +2 位作者 方志军 高永彬 张娟 《计算机应用》 CSCD 北大核心 2019年第9期2591-2596,共6页
针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目... 针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目,对样本集中的噪声样本进行精确识别并予以滤除;其次,在过采样过程中基于聚类的思想将样本集划分为不同的子簇,根据子簇的簇心及其所包含的样本数目,在簇内样本与簇心之间进行新样本的合成操作。在样本合成过程中充分考虑类间和类内数据不平衡性,对样本及时修正以保证合成样本质量,平衡样本信息;最后,利用AdaBoost算法的优势,采用决策树作为基分类器,对平衡后的样本集进行训练,迭代多次直到满足终止条件,得到最终分类模型。选择G-mean、AUC作为评价指标,通过在6组KEEL数据集进行对比实验。实验结果表明,所提的过采样算法与经典的过采样算法SMOTE、自适应综合过采样技术(ADASYN)相比,G-means和AUC在4组中有3组最高;所提分类模型与现有的不平衡分类模型SMOTE-Boost,CUS-Boost,RUS-Boost相比,6组数据中:G-means均高于CUS-Boost和RUS-Boost,有3组低于SMOTE-Boost;AUC均高于SMOTE-Boost和RUS-Boost,有1组低于CUS-Boost。验证了所提的KSMOTE-AdaBoost具有更好的分类效果,且模型泛化性能更高。 展开更多
关键词 不平衡数据分 合成少数过采样技术 K近邻 过采样 ADABOOST算法
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部