支持向量机(Support Vector Machine,SVM)拥有简洁的数学函数,能够非常有效地处理分类和回归问题,SVM具有两大优点:边界最大化和利用核函数解决线性不可分问题.但是由于SVM的训练复杂度依赖于数据集的规模,所以SVM处理大规模数据时能力...支持向量机(Support Vector Machine,SVM)拥有简洁的数学函数,能够非常有效地处理分类和回归问题,SVM具有两大优点:边界最大化和利用核函数解决线性不可分问题.但是由于SVM的训练复杂度依赖于数据集的规模,所以SVM处理大规模数据时能力非常有限.粒度支持向量机(Granular Support Vector Machine,GSVM)模型可以有效提高SVM的学习效率,但会损失一定的泛化能力.提出一种新的粒度支持向量机学习算法,称为层次粒度支持向量机(Hierarchical Granular Support Vector M achine,HGSVM),通过定义一个新的数据置信度挑选对分类贡献较大的重要信息粒,并在每次的迭代训练中根据粒的重要性进行自动粒划,以获得更好的泛化能力.在UCI标准数据集上的实验结果表明,与传统的粒度支持向量机相比,本文的算法可获得较好的分类性能.展开更多
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
文摘支持向量机(Support Vector Machine,SVM)拥有简洁的数学函数,能够非常有效地处理分类和回归问题,SVM具有两大优点:边界最大化和利用核函数解决线性不可分问题.但是由于SVM的训练复杂度依赖于数据集的规模,所以SVM处理大规模数据时能力非常有限.粒度支持向量机(Granular Support Vector Machine,GSVM)模型可以有效提高SVM的学习效率,但会损失一定的泛化能力.提出一种新的粒度支持向量机学习算法,称为层次粒度支持向量机(Hierarchical Granular Support Vector M achine,HGSVM),通过定义一个新的数据置信度挑选对分类贡献较大的重要信息粒,并在每次的迭代训练中根据粒的重要性进行自动粒划,以获得更好的泛化能力.在UCI标准数据集上的实验结果表明,与传统的粒度支持向量机相比,本文的算法可获得较好的分类性能.
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.