利用自蔓延高温合成技术(self-propagating high temperature syntheris,SHS)合成La0.67Sr0.33MnO3粉体,探讨了自蔓延合成工艺对粉体结构及放电等离子体(spark plasma sintering,SPS)和普通烧结对La0.67Sr0.33MnO3粉体烧结性能和陶瓷显...利用自蔓延高温合成技术(self-propagating high temperature syntheris,SHS)合成La0.67Sr0.33MnO3粉体,探讨了自蔓延合成工艺对粉体结构及放电等离子体(spark plasma sintering,SPS)和普通烧结对La0.67Sr0.33MnO3粉体烧结性能和陶瓷显微结构的影响。经XRD,SEM,密度测试等结果表明:在自蔓延法合成出的物相为单一的钙钛矿型结构。SPS烧结与传统的固相烧结法相比:SPS快速烧结大大降低了传统固相法烧结温度,烧结后的晶粒大小基本均匀,烧结体致密度高。经过巨磁电子效应(colossal magnetoresistance,CMR)的测量得出,采用SPS放电等离子烧结的样品相对于普通烧结的样品,低温CMR效应有所增大。展开更多
By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field a...By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field are studied. With regard to the dominant influence of grain boundary scattering which is taken as a boundary condition for the electrical transport, the grain size-dependent electrical conductivity is investigated. In addition, the reorientation of the relative magnetization between grains brings the change of the electron spin when the magnetonanocrystailine material is subjected to the magnetic field, resulting in the remarkable giant magnetoresistance effect.展开更多
The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the...The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the Pnma space group without any impurity phase. The effect of sintering temperature on the Curie temperature(TC) was studied. The small increment in TC is found with increasing the sintering temperature. The magnetocaloric study exposes a quite large change of the magnetic entropy, which varies with sintering temperature. For an applied magnetic field of 3 T and sintering temperature of 1300 °C, the relative cooling power(RCP) is 89 J/kg. As a result, the studied compound can be considered as potential material for magnetic refrigeration near and below room temperature.展开更多
Co-based Co63Fe4B22.4Si5.6Nb5 amorphous ribbons with a width of 150 μm and a thickness of 50 μm were prepared by single-roller melt-spinning process.The giant magneto-impedance(GMI) effect of the stress-joule-heated...Co-based Co63Fe4B22.4Si5.6Nb5 amorphous ribbons with a width of 150 μm and a thickness of 50 μm were prepared by single-roller melt-spinning process.The giant magneto-impedance(GMI) effect of the stress-joule-heated ribbons under applied tensile stress ranging from 37 to 148 MPa was investigated.Experimental results show that the spectra of GMI ratio vs.external direct current(dc) field(Hex) of the samples changes dramatically with annealing tension() and driving frequency.The single-peak(SP) GMI curve with maximum GMI ratio of 260% and magnetic field sensitivity of 52%/Oe was obtained in the sample applied tensile stress of 74 MPa at frequency of 3.6 MHz.A three-peak behaviour appeared in the samples under σ of 111 and 148 MPa.The uncommon three-peak behaviour was attributed to several factors,which effectively originated from the balance between domain-wall movement and magnetization rotation.展开更多
The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-d...The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional(2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide(AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low inplane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.展开更多
With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead...With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead to the idea of spintronics.A brief introduction is given to GMR effects from scientific background to experimental observations and theoretical models.In addition,the mechanisms of various magnetoresistance beyond the GMR are reviewed,for instance,tunnelling magnetoresistance,colossal magnetoresistance,and magnetoresistance in ferromagnetic semiconductors,nanowires,organic spintronics and non-magnetic systems.展开更多
The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlyin...The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlying cell uptake, the intracellular trail, final fate and the biological effects of SPIONs have not yet been clearly elucidated. Here, we showed that multiple endocytic pathways were involved in the internalization process of SPIONs in the RAW264.7 macrophage. The internalized SPIONs were biocompatible and used three different metabolic pathways: The SPIONs were distributed to daughter cells during mito- sis; they were degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; and, the intact SPIONs were potentially exocytosed out of the cells. The internalized SPIONs did not induce cell damage hut affected iron metabolism, inducing the upregulation of ferritin light chain at both the mRNA and protein levels and ferroportin 1 at the mRNA level. These results may contribute to the development of nanobiology and to the safe use of SPIONs in medicine when administered as a contrast medium or a drug delivery tool.展开更多
文摘利用自蔓延高温合成技术(self-propagating high temperature syntheris,SHS)合成La0.67Sr0.33MnO3粉体,探讨了自蔓延合成工艺对粉体结构及放电等离子体(spark plasma sintering,SPS)和普通烧结对La0.67Sr0.33MnO3粉体烧结性能和陶瓷显微结构的影响。经XRD,SEM,密度测试等结果表明:在自蔓延法合成出的物相为单一的钙钛矿型结构。SPS烧结与传统的固相烧结法相比:SPS快速烧结大大降低了传统固相法烧结温度,烧结后的晶粒大小基本均匀,烧结体致密度高。经过巨磁电子效应(colossal magnetoresistance,CMR)的测量得出,采用SPS放电等离子烧结的样品相对于普通烧结的样品,低温CMR效应有所增大。
基金Supported by the National Natural Science Foundation of China under Grant No 90405005, the National Basic Research Program of China under Grant No 2007CB607506, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20050730016, and the Fund of of Lanzhou University under Grant No WUT2005Z04.
文摘By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field are studied. With regard to the dominant influence of grain boundary scattering which is taken as a boundary condition for the electrical transport, the grain size-dependent electrical conductivity is investigated. In addition, the reorientation of the relative magnetization between grains brings the change of the electron spin when the magnetonanocrystailine material is subjected to the magnetic field, resulting in the remarkable giant magnetoresistance effect.
基金Project(2012-RIAIB300784) supported by Basic Science Research Program through the NRF of Korea funded by the MESTProject(2012HIB8A2026212) supported by the MEST and NRF of Korea the Human Training Project for Regional Innovation
文摘The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the Pnma space group without any impurity phase. The effect of sintering temperature on the Curie temperature(TC) was studied. The small increment in TC is found with increasing the sintering temperature. The magnetocaloric study exposes a quite large change of the magnetic entropy, which varies with sintering temperature. For an applied magnetic field of 3 T and sintering temperature of 1300 °C, the relative cooling power(RCP) is 89 J/kg. As a result, the studied compound can be considered as potential material for magnetic refrigeration near and below room temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.50825103 and 51271194)Ningbo Science and Technology Innovation Team(Grant No.2011B82004)Equipment Project for Research of the Chinese Academy of Sciences(Grant No.Y2010010)
文摘Co-based Co63Fe4B22.4Si5.6Nb5 amorphous ribbons with a width of 150 μm and a thickness of 50 μm were prepared by single-roller melt-spinning process.The giant magneto-impedance(GMI) effect of the stress-joule-heated ribbons under applied tensile stress ranging from 37 to 148 MPa was investigated.Experimental results show that the spectra of GMI ratio vs.external direct current(dc) field(Hex) of the samples changes dramatically with annealing tension() and driving frequency.The single-peak(SP) GMI curve with maximum GMI ratio of 260% and magnetic field sensitivity of 52%/Oe was obtained in the sample applied tensile stress of 74 MPa at frequency of 3.6 MHz.A three-peak behaviour appeared in the samples under σ of 111 and 148 MPa.The uncommon three-peak behaviour was attributed to several factors,which effectively originated from the balance between domain-wall movement and magnetization rotation.
基金This work was supported by the Research Grant Council of Hong Kong(N_PolyU540/17)the Shenzhen Science and Technology Innovation Commission(JCYJ20180507183424383)the Hong Kong Polytechnic University(G-SB79 and G-YBPS).
文摘The atomic structure of quasi one-dimensional(1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional(2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide(AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low inplane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51125004,10974120,B13029 and JQ200901)the National Basic Research Program of China (Grant Nos. 2013CB922303and 2009CB929202)
文摘With the discovery of giant magnetoresistance(GMR),research effort has been made to exploiting the influence of spins on the mobility of electrons in ferromagnetic materials and/or artificial structures,which has lead to the idea of spintronics.A brief introduction is given to GMR effects from scientific background to experimental observations and theoretical models.In addition,the mechanisms of various magnetoresistance beyond the GMR are reviewed,for instance,tunnelling magnetoresistance,colossal magnetoresistance,and magnetoresistance in ferromagnetic semiconductors,nanowires,organic spintronics and non-magnetic systems.
基金supported by the National Basic Research Program of China,Ministry of Science and Technology of China (Grant Nos. 2006CB933202 and 2011CB933504) the National High Technology Research and Development Program of China (Grant No. 2008AA02Z425)a grant from the National Natural Science Foundation of China (Grant No.81071072)
文摘The potential applications of superparamagnetic iron oxide nanoparticles (SPIONs) in several nanomedical fields have attract- ed intense interest based on the cell-nano interaction. However, the mechanisms underlying cell uptake, the intracellular trail, final fate and the biological effects of SPIONs have not yet been clearly elucidated. Here, we showed that multiple endocytic pathways were involved in the internalization process of SPIONs in the RAW264.7 macrophage. The internalized SPIONs were biocompatible and used three different metabolic pathways: The SPIONs were distributed to daughter cells during mito- sis; they were degraded in the lysosome and free iron was released into the intracellular iron metabolic pool; and, the intact SPIONs were potentially exocytosed out of the cells. The internalized SPIONs did not induce cell damage hut affected iron metabolism, inducing the upregulation of ferritin light chain at both the mRNA and protein levels and ferroportin 1 at the mRNA level. These results may contribute to the development of nanobiology and to the safe use of SPIONs in medicine when administered as a contrast medium or a drug delivery tool.