期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
总体平均经验模式分解与1.5维谱方法的研究 被引量:71
1
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 总体平均经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
在线阅读 下载PDF
基于总体平均经验模式分解近似熵和混合PSO-BP算法的轴承故障诊断方法 被引量:9
2
作者 张淑清 黄文静 +3 位作者 胡永涛 宿新爽 陆超 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3048-3054,共7页
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP... 针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 展开更多
关键词 轴承 故障诊断 总体平均经验模式分解 近似熵 混合粒子群神经网络
在线阅读 下载PDF
自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用 被引量:45
3
作者 雷亚国 孔德同 +1 位作者 李乃鹏 林京 《机械工程学报》 EI CAS CSCD 北大核心 2014年第3期64-70,共7页
总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模... 总体平均经验模式分解(Ensemble empirical mode decomposition,EEMD)是针对经验模式分解(Empirical mode decomposition,EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模式混淆的目的。然而,EEMD分解效果取决于添加噪声的幅值、筛选次数等参数的选择。目前的研究通常是人为选择这些参数,具有较大的盲目性和主观性,因此分解结果差强人意。为了解决以上问题,提出一种新的自适应总体平均经验模式分解方法。该方法基于EMD的滤波特性,在提取本征模式分量(Intrinsic mode function,IMF)的过程中自适应改变加入噪声的幅值,并对每个IMF自动选择不同的筛选次数,可以更好地削弱模式混淆。通过仿真试验验证了该方法的有效性,并将该方法应用于行星轮故障检测中,取得了比EEMD更好的故障检测结果。 展开更多
关键词 自适应总体平均经验模式分解 行星齿轮箱 故障检测
在线阅读 下载PDF
基于混合经验模式分解的水轮机压力脉动分析 被引量:3
4
作者 蒲桂林 周建中 +2 位作者 李超顺 李静 肖剑 《水力发电》 北大核心 2013年第12期57-60,71,共5页
针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例... 针对水轮机尾水管压力脉动信号的非平稳性以及经验模式分解(EMD)和集成平均经验模式分解(EEMD)的一些重要缺陷,以虚假分量识别和信号重构为基础,提出了一种混合经验模式分解方法。分别以仿真信号和某混流式水轮机尾水管压力脉动信号为例,验证了该方法相对于EMD和EEMD的优势。 展开更多
关键词 水轮机 压力脉动 经验模式分解 集成平均经验模式分解 模态混叠 信号分析 特征提取
在线阅读 下载PDF
一种经验模式分解下的海杂波小目标检测方法 被引量:2
5
作者 朱雪瑗 杨勇虎 李颖 《电讯技术》 北大核心 2018年第3期251-256,共6页
利用海杂波有效探测海上小目标是目前雷达探测领域的热点问题,具有重要的应用价值。鉴于海杂波是一种非线性非平稳性的雷达回波信号,充分发挥整体平均经验模式分解的优势,将海杂波分解为若干个不同尺度的独立分量。通过研究发现有目标时... 利用海杂波有效探测海上小目标是目前雷达探测领域的热点问题,具有重要的应用价值。鉴于海杂波是一种非线性非平稳性的雷达回波信号,充分发挥整体平均经验模式分解的优势,将海杂波分解为若干个不同尺度的独立分量。通过研究发现有目标时,分解出的前5个分量与未分解前信号的相关系数明显减小,因此提出了一种新的海杂波背景下的目标检测方法。通过实测和模拟的海杂波数据进行训练和测试,研究结果表明,该方法能有效地实现海杂波下目标的探测,性能优于经典时域下、分数阶傅里叶变换域下以及平均经验模式分解后的广义Hurst指数的目标检测方法。 展开更多
关键词 合成孔径雷达图像 小目标检测 海杂波 整体平均经验模式分解 相关系数
在线阅读 下载PDF
一种改进的集合平均经验模态分解去噪方法 被引量:6
6
作者 屈中阳 李鸿光 《噪声与振动控制》 CSCD 2014年第5期171-176,共6页
针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信... 针对现有非平稳信号去噪处理中的难点,提出一种改进的基于集合平均经验模态分解(EEMD)去噪方法,该方法根据本征模态函数(IMF)能量从被测信号中估计出噪声,使用估计的噪声代替EEMD方法中添加的噪声,最后将集合平均IMF分量累加得到去噪信号。使用相关性判据剔除了EMD分解产生的伪IMF分量,改进了噪声估计方法。仿真表明,改进的方法能够对调幅调频含噪信号进行有效的去噪处理。 展开更多
关键词 振动与波 集合平均经验模式分解 去噪 噪声估计 阈值处理
在线阅读 下载PDF
基于EEMD穿墙雷达人的运动模式识别 被引量:3
7
作者 王宏 周正欧 +1 位作者 李廷军 孔令讲 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期346-351,共6页
根据穿墙雷达动目标探测中人的运动多普勒信号属于非线性、非平稳信号的特点,分别采用经验模式分解(EMD)和整体平均经验模式分解(EEMD)将人5种运动的多普勒信号分解为一系列本征模式函数(IMF)。采用支持向量机(SVM)学习算法,将两种方法... 根据穿墙雷达动目标探测中人的运动多普勒信号属于非线性、非平稳信号的特点,分别采用经验模式分解(EMD)和整体平均经验模式分解(EEMD)将人5种运动的多普勒信号分解为一系列本征模式函数(IMF)。采用支持向量机(SVM)学习算法,将两种方法分解后的各IMF能量占总能量的百分比作为支持向量机分类器的特征向量进行模式识别,分析了特征向量维数对识别率的影响,比较了EMD和EEMD的识别率。EEMD能够消除EMD存在的模式混合问题,识别率更高,达到94%以上。 展开更多
关键词 多普勒特性 整体平均经验模式分解 经验模式分解 支持向量机 穿墙雷达
在线阅读 下载PDF
自适应EEMD方法在心电信号处理中的应用 被引量:29
8
作者 陈略 唐歌实 +2 位作者 訾艳阳 冯卓楠 李康 《数据采集与处理》 CSCD 北大核心 2011年第3期361-366,共6页
针对总体平均经验模式分解(EEMD)中参数自动获取问题,提出了一种自适应EEMD方法。首先通过分析白噪声影响经验模式分解效果,建立了EEMD方法中加入白噪声大小的可依据准则,对不同信号可自适应获取加入白噪声大小与总体平均次数两个重要参... 针对总体平均经验模式分解(EEMD)中参数自动获取问题,提出了一种自适应EEMD方法。首先通过分析白噪声影响经验模式分解效果,建立了EEMD方法中加入白噪声大小的可依据准则,对不同信号可自适应获取加入白噪声大小与总体平均次数两个重要参数,进而得到一种自适应EEMD算法。最后将其应用于心电信号处理中,成功进行心电信号消噪与心率特征提取,验证了该算法的有效性,为复杂背景条件下的航天员心电信号处理提供了一种有效方法。 展开更多
关键词 自适应 平均经验模式分解 白噪声 心电信号处理
在线阅读 下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
9
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(EEMD) 样本熵 GK模糊聚类 机械故障识别
在线阅读 下载PDF
基于改进EEMD的穿墙雷达动目标微多普勒特性分析 被引量:24
10
作者 王宏 Narayanan R M +2 位作者 周正欧 李廷军 孔令讲 《电子与信息学报》 EI CSCD 北大核心 2010年第6期1355-1360,共6页
穿墙雷达动目标探测中人的心跳、呼吸、手臂摆动等运动的微多普勒信号是非线性、非平稳信号,可以采用经验模式分解(EMD)对其进行时频分析。由于EMD分解存在模式混合问题,该文提出一种改进的整体平均经验模式分解(EEMD)方法,并将其应用... 穿墙雷达动目标探测中人的心跳、呼吸、手臂摆动等运动的微多普勒信号是非线性、非平稳信号,可以采用经验模式分解(EMD)对其进行时频分析。由于EMD分解存在模式混合问题,该文提出一种改进的整体平均经验模式分解(EEMD)方法,并将其应用于穿墙雷达人的运动微多普勒特性分析中,并且对分解后的每个本征模式函数(IMF)进行Hilbert-Huang变换(HHT),得到信号的时间-频率-能量谱。仿真数据和实验结果分析均表明,改进的EEMD方法不仅能够有效消除EMD中的模式混合问题,将人运动微多普勒信号中的不同频率尺度分解在不同的IMF中,而且还能够有效抑制原始信号中的噪声,提高信噪比,得到更精细、更清晰的时频分布。 展开更多
关键词 穿墙雷达 经验模式分解 整体平均经验模式分解 HILBERT-HUANG变换 微多普勒特性
在线阅读 下载PDF
基于快速谱峭度图的EEMD内禀模态分量选取方法 被引量:20
11
作者 蒋超 刘树林 +1 位作者 姜锐红 王波 《振动.测试与诊断》 EI CSCD 北大核心 2015年第6期1173-1178,1206,共6页
针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD... 针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD分解获得的一组无模式混淆的IMF,计算原信号及各个IMF的快速谱峭度图,选择每个快速谱峭度图中谱峭度最大值所处的频带作为参考频带,比较各个IMF的参考频带与原信号谱峭度最大值所处频带之间的从属关系,筛选出反应故障特征的敏感IMF,为后续故障诊断提供特征信息。将该方法应用于模拟仿真信号及滚动轴承滚动体故障信号,验证了方法的有效性。 展开更多
关键词 总体平均经验模式分解 快速谱峭度图 冲击信号 故障诊断
在线阅读 下载PDF
基于EEMD和熵理论的电动汽车制动意图识别方法 被引量:12
12
作者 王波 唐先智 +2 位作者 王连东 杨树军 马雷 《汽车工程》 EI CSCD 北大核心 2018年第8期935-941,共7页
为抑制制动踏板信号中存在的间歇性成分或脉冲成分所造成的信号分解过程中的模式混叠现象,进一步提高制动意图识别的准确率和实时性,本文中提出了基于平均经验模式分解(EEMD)和熵理论的电动汽车驾驶员制动意图聚类识别法。首先,运用EEM... 为抑制制动踏板信号中存在的间歇性成分或脉冲成分所造成的信号分解过程中的模式混叠现象,进一步提高制动意图识别的准确率和实时性,本文中提出了基于平均经验模式分解(EEMD)和熵理论的电动汽车驾驶员制动意图聚类识别法。首先,运用EEMD算法将制动踏板信号分解为IMF分量,以抑制模式混叠现象,更准确地提取制动踏板信号特征。接着,运用Shannon熵对IMF分量进行筛选,以减少特征提取的计算量。再用样本熵提取筛选后的制动踏板信号IMF分量的特征,得到不同制动意图的制动踏板信号特征向量。最后,运用聚类算法对制动意图进行识别。离线试验和实时试验的结果表明,基于EEMD和熵理论的制动意图聚类识别法比基于HHT的制动意图识别法具有更高的识别准确率和更好的实时性。 展开更多
关键词 电动汽车 制动意图 平均经验模式分解 熵理论 聚类识别
在线阅读 下载PDF
基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断 被引量:28
13
作者 许凡 方彦军 张荣 《计算机集成制造系统》 EI CSCD 北大核心 2016年第11期2631-2642,共12页
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的... 针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。 展开更多
关键词 滚动轴承 故障诊断 模糊熵 总体平均经验模式分解 Gath-Geva聚类
在线阅读 下载PDF
EEMD的非平稳信号降噪及其故障诊断应用 被引量:27
14
作者 吕建新 吴虎胜 田杰 《计算机工程与应用》 CSCD 北大核心 2011年第28期223-227,共5页
针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于... 针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于故障诊断。利用EEMD对非平稳振动信号进行自适应的分解,有效抑制经典经验模式分解的可能出现的模式混叠现象,再以所得的各固有模式分量(Intrinsic Mode Function,IMF)的过零率作为噪声评判准则,重构过零率阈值范围内的非噪声分量以实现信号降噪。另外,计算非噪声分量的能量矩作为故障特征提输入二叉树支持向量机实现的柴油机故障诊断验证了该方法有效性。 展开更多
关键词 往复机械 信号降噪 特征提取 过零率分析 总体平均经验模式分解 能量矩
在线阅读 下载PDF
一种基于EEMD-SVD和FCM的轴承故障诊断方法 被引量:10
15
作者 张立国 康乐 +1 位作者 金梅 李盼 《计量学报》 CSCD 北大核心 2016年第1期67-70,共4页
提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量... 提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量进行奇异值分解,然后将得到的奇异值矩阵作为特征向量,通过FCM模糊聚类进行识别。实验结果表明,此方法可有效地对轴承故障类型进行识别。 展开更多
关键词 计量学 总体平均经验模式分解 奇异值分解 模糊C均值聚类 轴承故障诊断
在线阅读 下载PDF
基于EEMD和二代小波变换的表面肌电信号消噪方法 被引量:14
16
作者 席旭刚 朱海港 罗志增 《传感技术学报》 CAS CSCD 北大核心 2012年第11期1488-1493,共6页
为了更好地消除混杂在表面肌电信号(sEMG)中的噪声,提出了一种基于总体平均经验模式分解(EEMD)和二代小波变换的sEMG消噪新方法。首先对信号加入白噪声处理后进行经验模态分解(EMD),然后对高频的内蕴模式函数(IMF)分量进行二代小波阈值... 为了更好地消除混杂在表面肌电信号(sEMG)中的噪声,提出了一种基于总体平均经验模式分解(EEMD)和二代小波变换的sEMG消噪新方法。首先对信号加入白噪声处理后进行经验模态分解(EMD),然后对高频的内蕴模式函数(IMF)分量进行二代小波阈值消噪处理,最后把处理后的高频IMF分量与低频IMF分量进行叠加,重构后的信号即为去噪信号。实验结果表明,该方法融合了二代小波与EEMD的优点,能更好的消除噪声,最大限度的保留有用信号,并具有更高的信噪比。 展开更多
关键词 表面肌电信号 消噪 总体平均经验模式分解 二代小波
在线阅读 下载PDF
EEMD近似熵和SVM在柴油机传动系统中的故障诊断研究 被引量:10
17
作者 别锋锋 刘杨 +1 位作者 裴峻峰 范文华 《机械设计与制造》 北大核心 2015年第3期24-27,31,共5页
柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发... 柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发电机组而言,频谱分析难以提取其频率分量,因此难以实现故障诊断。通过总体平均经验模式分解(EEMD)的方法获得其本征模式函数的近似熵,将该近似熵作为特征向量结合支持向量机(SVM)进行分类,从而实现柴油发电机组的故障识别。通过实验仿真和某柴油发电机组振动异常问题的实测试验表明,该方法可以准确有效的提取其故障信息和频率,为柴油发电机组传动机构故障诊断提供支持。 展开更多
关键词 振动与波 故障诊断 总体平均经验模式分解 支持向量机 传动部件
在线阅读 下载PDF
基于WA-EMD算法的脉冲式超宽带雷达多目标生命体征检测 被引量:13
18
作者 唐良勇 赵恒 张亚菊 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第2期198-206,共9页
针对脉冲式超宽带雷达的非接触式生命体征检测系统中多目标生命体征难以准确识别和分离的问题,该文提出一种基于窗平均经验模式分解(WA-EMD)的高分辨多目标生命体征分离和提取算法。WA-EMD算法利用加窗的方法来计算局部平均值,具有良好... 针对脉冲式超宽带雷达的非接触式生命体征检测系统中多目标生命体征难以准确识别和分离的问题,该文提出一种基于窗平均经验模式分解(WA-EMD)的高分辨多目标生命体征分离和提取算法。WA-EMD算法利用加窗的方法来计算局部平均值,具有良好的抗模态混叠和抗噪声性能,能够准确地分离出不同人体目标的呼吸信号,实现同一距离门中多目标的有效检测。利用Hilbert变换获得呼吸信号的时变频率。仿真实验和雷达实测结果表明,该文提出的算法能够准确有效地实现同一距离门中多目标的生命体征的准确识别和分离,可计算实时的呼吸速率。 展开更多
关键词 超宽带雷达 平均经验模式分解 时频分析 非接触式生命体征检测
在线阅读 下载PDF
电能质量扰动识别的不同时频分析方法研究 被引量:6
19
作者 张立国 张淑清 +4 位作者 李莎莎 乔永静 张航飞 李明星 贺朋 《计量学报》 CSCD 北大核心 2017年第3期345-350,共6页
分析了EEMD、LMD、ITD的算法、特点及分解不同扰动信号的实现步骤。经过实验模拟,对比分解所得效果图,得到适合各种电能质量扰动信号的最佳分解方法:对于电压暂升、电压暂降、电压中断幅值类扰动信号用EEMD方法分解效果最佳;脉冲暂态扰... 分析了EEMD、LMD、ITD的算法、特点及分解不同扰动信号的实现步骤。经过实验模拟,对比分解所得效果图,得到适合各种电能质量扰动信号的最佳分解方法:对于电压暂升、电压暂降、电压中断幅值类扰动信号用EEMD方法分解效果最佳;脉冲暂态扰动EEMD和ITD均可,ITD方法更快、定位更准;暂态振荡信号用ITD方法效果较好;电压闪变扰动EEMD分解效果较好;谐波信号用ITD分解效果较好。 展开更多
关键词 计量学 电能质量扰动信号 总体平均经验模式分解 局部均值分解 固有时间尺度分解
在线阅读 下载PDF
基于EEMD的行星齿轮箱齿轮裂纹损伤定位 被引量:4
20
作者 刘浩华 李方义 +3 位作者 李国彦 王一凡 张珊珊 董德浩 《振动.测试与诊断》 EI CSCD 北大核心 2017年第3期426-431,共6页
针对行星齿轮式变速箱的齿轮裂纹损伤难以提取特征频率和定位的问题,提出基于总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的齿轮局部损伤频率解调分析方法。该方法在建立的齿轮局部损伤振动信号模型的基础上... 针对行星齿轮式变速箱的齿轮裂纹损伤难以提取特征频率和定位的问题,提出基于总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的齿轮局部损伤频率解调分析方法。该方法在建立的齿轮局部损伤振动信号模型的基础上,分别对太阳轮、齿圈、行星轮的裂纹损伤信号进行EEMD分解和频率解调分析,通过频谱图提取齿轮的局部损伤特征频率,从而识别变速箱中裂纹损伤齿轮的位置。综合仿真分析和试验结果表明,基于EEMD的齿轮局部损伤频率解调分析方法可以有效地提取太阳轮、齿圈和行星轮的裂纹损伤特征频率,实现行星齿轮式变速箱中齿轮裂纹损伤的定位。 展开更多
关键词 变速箱 频率解调 损伤定位 总体平均经验模式分解
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部