Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite wa...Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite was recovered from ferrous sulphate by a novel co-precipitation method with calcium hydroxide as the precipitant. Under optimum conditions, the obtained spherical magnetite particles are well crystallized with a Fe304 purity of 88.78%, but apt to aggregate with a median particle size of 1.83 μm. Magnetic measurement reveals the obtained Fe304 particles are soft magnetic with a saturation magnetization of 81.73 A-m2/kg. In addition, a highly crystallized gypsum co-product is obtained in blocky or irregular shape. Predictably, this study would provide additional opportunities for future application of low-cost Fe3O4 particles in water treatment field.展开更多
This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the ...This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the continuous fixed-bed column system, two common models, namely (a) Bohart and Adams and (b) Clark were implemented. The Bohart and Adams capacity was up to N = 46,166 mg.L-1 or q0 = 104.5 mg.g-1 for bed-depth 15 cm, initial dye concentration 800 mg.g-1 and flow rate 20 mL.min-1. The results revealed that the Methylene Blue is fairly adsorbed on coffee residues. Consequently, this process can be applied as a low cost technique for cleaning basic dyes from the aquatic environment.展开更多
基金Project(2013A090100013)supported by the Special Project on the Integration of Industry,Education and Research of Guangdong Province,ChinaProject(201407300993)supported by the High-Tech Research and Development Program of Xinjiang Uygur Autonomous Region,China
文摘Proper utilization of the FeSO4·7H2O waste slag generated from TiO2 industry is an urgent need, and Fe3O4 particles are currently being widely used in the wastewater flocculation field. In this work, magnetite was recovered from ferrous sulphate by a novel co-precipitation method with calcium hydroxide as the precipitant. Under optimum conditions, the obtained spherical magnetite particles are well crystallized with a Fe304 purity of 88.78%, but apt to aggregate with a median particle size of 1.83 μm. Magnetic measurement reveals the obtained Fe304 particles are soft magnetic with a saturation magnetization of 81.73 A-m2/kg. In addition, a highly crystallized gypsum co-product is obtained in blocky or irregular shape. Predictably, this study would provide additional opportunities for future application of low-cost Fe3O4 particles in water treatment field.
文摘This paper contributes to the Industrial Ecology Concept by using a common urban solid waste, i.e., coffee residues, to clean industrial wastewaters polluted by basic dyes, e.g., Methylene Blue. For the data from the continuous fixed-bed column system, two common models, namely (a) Bohart and Adams and (b) Clark were implemented. The Bohart and Adams capacity was up to N = 46,166 mg.L-1 or q0 = 104.5 mg.g-1 for bed-depth 15 cm, initial dye concentration 800 mg.g-1 and flow rate 20 mL.min-1. The results revealed that the Methylene Blue is fairly adsorbed on coffee residues. Consequently, this process can be applied as a low cost technique for cleaning basic dyes from the aquatic environment.