在压缩感知理论框架中,一个关键问题是信号的稀疏重构。这个问题可以归结为一个结构化的非光滑优化问题。本文提出了一种基于自适应滤波成比例归一化最小均方的压缩传感重构算法ASS-ZA-LMS-SA(adaptive step size zeroattraction least ...在压缩感知理论框架中,一个关键问题是信号的稀疏重构。这个问题可以归结为一个结构化的非光滑优化问题。本文提出了一种基于自适应滤波成比例归一化最小均方的压缩传感重构算法ASS-ZA-LMS-SA(adaptive step size zeroattraction least mean square sigmoid algorithm),在该算法中,为了提高算法的收敛性,我们将sigmoid函数引入到压缩感知重构的代价函数中,此外,我们利用自适应滤波与信号稀疏重构的相似性,将成比例归一化最小均方算法应用到压缩感知重构,设计了一种基于自适应滤波算法的压缩感知稀疏信号重构算法。实验结果表明,与传统的压缩感知重构算法相比,我们所提出的算法具有更高的重构精度以及更快的收敛速度。展开更多
针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的...针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。展开更多
在EDGE(Enhanced Data Rate for GSM Evolution)移动通信系统中,提出了一种基于最小均方误差的自适应8PSK均衡解调算法。利用基于最小均方误差的自适应滤波器,根据突发中已知的训练序列,可快速准确地估计出系统信道参数,然后通过...在EDGE(Enhanced Data Rate for GSM Evolution)移动通信系统中,提出了一种基于最小均方误差的自适应8PSK均衡解调算法。利用基于最小均方误差的自适应滤波器,根据突发中已知的训练序列,可快速准确地估计出系统信道参数,然后通过判决反馈均衡消除多径信道对接收信号的干扰,从而保证系统的性能。仿真结果表明,在各种多径信道模型下,该算法均可快速收敛,利用系统的26个训练序列准确估计出系统信道参数,并实现均衡和解调;在信噪比为8-10dB时,通过标准规定的MCS-5信道编解码后,系统的误码率就已经小于10^-4,完全符合标准要求,是一种简单实用的算法,便于硬件实现。展开更多
文摘在压缩感知理论框架中,一个关键问题是信号的稀疏重构。这个问题可以归结为一个结构化的非光滑优化问题。本文提出了一种基于自适应滤波成比例归一化最小均方的压缩传感重构算法ASS-ZA-LMS-SA(adaptive step size zeroattraction least mean square sigmoid algorithm),在该算法中,为了提高算法的收敛性,我们将sigmoid函数引入到压缩感知重构的代价函数中,此外,我们利用自适应滤波与信号稀疏重构的相似性,将成比例归一化最小均方算法应用到压缩感知重构,设计了一种基于自适应滤波算法的压缩感知稀疏信号重构算法。实验结果表明,与传统的压缩感知重构算法相比,我们所提出的算法具有更高的重构精度以及更快的收敛速度。
文摘针对外部强噪声环境下电子耳蜗语音质量受损、适应性差等问题,提出了基于谱减法和变步长最小均方误差(LMS)自适应滤波算法联合去噪的改进方法,并以该方法构建了一个电子耳蜗前端语音预处理系统。利用变步长LMS自适应滤波算法输出误差的平方项来调节步长,采用步长值固定与变化相结合的方法,解决了自适应滤波算法收敛速度慢、稳态误差大的问题,适应性得到提高,提高了语音信号通信质量。该系统以TMS320VC5416和音频编解码芯片TLV320AIC23B为核心,通过多通道缓冲串口(McBSP)和串行外设接口(SPI)实现了语音数据的高速采集和实时处理。实验仿真和测试结果表明该算法消除噪声性能好,信噪比在低输入信噪比情况下提高约10 d B,语音质量感知评价(PESQ)分值也得到较大提高,能有效提高语音信号质量,且该系统性能稳定,能进一步提高耳蜗前端语音的清晰度和可懂度。
文摘在EDGE(Enhanced Data Rate for GSM Evolution)移动通信系统中,提出了一种基于最小均方误差的自适应8PSK均衡解调算法。利用基于最小均方误差的自适应滤波器,根据突发中已知的训练序列,可快速准确地估计出系统信道参数,然后通过判决反馈均衡消除多径信道对接收信号的干扰,从而保证系统的性能。仿真结果表明,在各种多径信道模型下,该算法均可快速收敛,利用系统的26个训练序列准确估计出系统信道参数,并实现均衡和解调;在信噪比为8-10dB时,通过标准规定的MCS-5信道编解码后,系统的误码率就已经小于10^-4,完全符合标准要求,是一种简单实用的算法,便于硬件实现。