期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于级联微型神经网络的多角度车辆检测方法 被引量:5
1
作者 李浩 连捷 王辛岩 《计算机工程与应用》 CSCD 北大核心 2018年第22期233-238,共6页
车辆检测是智能交通系统建设的关键步骤,但在光照变化、遮挡等复杂交通场景下,单一角度视频检测的方法无法准确地获取车辆特定特征。为了提高交通监控图像中车辆检测的准确性,将AdaBoost算法嵌入微型的神经网络模型,并结合局部归一化像... 车辆检测是智能交通系统建设的关键步骤,但在光照变化、遮挡等复杂交通场景下,单一角度视频检测的方法无法准确地获取车辆特定特征。为了提高交通监控图像中车辆检测的准确性,将AdaBoost算法嵌入微型的神经网络模型,并结合局部归一化像素差值特征(LNPD),提出了基于级联微型神经网络的多角度车辆检测方法。该方法首先提取检测图像的局部归一化像素差值特征,然后使用多层感知器学习最优的特征子集及其组合特征,最后使用AdaBoost算法筛选最具区分力的特征构建强分类器。以不同复杂程度的真实交通场景中包含有正面、侧面及背面三个角度的样本集作为测试集,并与NPD、DPM-V5、ACF和RCNN等方法进行了定性与定量对比。实验结果表明,该车辆检测方法在三种数据集上的平均检测率和检测时间分别为82.28%和125 ms,优于传统车辆检测方法。 展开更多
关键词 智能交通 车辆检测 微型神经网 LNPD特征 级联分类器
在线阅读 下载PDF
基于深度学习和多域决策融合的轴承故障智能诊断技术
2
作者 林诗麒 陈智丽 +1 位作者 李宇鹏 孟维迎 《计算机集成制造系统》 EI CSCD 北大核心 2024年第10期3708-3718,共11页
鉴于滚动轴承振动信号的不平稳性及单一信息域特征的局限性在一定程度上增加了故障诊断难度,提出一种基于深度学习和多域决策融合的轴承故障诊断技术。采用S变换和递归图变换技术将振动信号从一维时域扩展至二维时频域和空间域;为使诊... 鉴于滚动轴承振动信号的不平稳性及单一信息域特征的局限性在一定程度上增加了故障诊断难度,提出一种基于深度学习和多域决策融合的轴承故障诊断技术。采用S变换和递归图变换技术将振动信号从一维时域扩展至二维时频域和空间域;为使诊断模型适应故障数据稀缺的现状,构建泛化性和自适应性较好的微型卷积神经网络,学习提取信号的多域特征,并使网络参数低至6个数量级,可实现快速训练和故障诊断;最后引入D-S证据理论对单域诊断结果进行融合。所提方法对凯斯西储大学数据集的9类轴承故障的平均诊断准确率达到99.84%。 展开更多
关键词 滚动轴承 微型卷积神经网络 多域融合 故障诊断
在线阅读 下载PDF
基于深度学习的多角度车辆动态检测方法 被引量:3
3
作者 李浩 张运胜 +1 位作者 连捷 李泽萍 《交通信息与安全》 CSCD 2017年第5期37-44,共8页
针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进。使用快速候选区域提取算... 针对在复杂场景下,背景区域干扰特征过多、被检测目标运动速度快等导致的动态目标检测率低的问题,研究了基于深度学习的多角度车辆动态检测方法,将带有微型神经网络的卷积神经网络(MLP-CNN)用于传统算法的改进。使用快速候选区域提取算法提取图像中可能存在车辆的区域,之后使用深层卷积神经网络(CNN)提取候选区域的特征,并在卷积层中增加微型神经网络(MLP)对每层的特征进一步综合抽象,最后使用支持向量机(SVM)区分目标和背景的CNN特征。实验表明,该方法能够处理高复杂度背景条件下,部分遮挡、运动速度快的目标特征检测,识别率高达87.9%,耗时仅需225ms,比常用方法效率有大幅度提升。 展开更多
关键词 智能交通 车辆检测 深度学习 卷积神经网 微型神经网
在线阅读 下载PDF
Non-linear Chemical Process Modelling and Application in Epichlorhydrine Production Plant Using Wavelet Networks 被引量:3
4
作者 黄德先 金以慧 +1 位作者 张杰 A.J.Morris 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期435-443,共9页
A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients c... A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima. 展开更多
关键词 WAVELET neural network non-linear system identification hybrid neuralnetwork
在线阅读 下载PDF
Prediction model for surface layer microhardness of processed TC17 via high energy shot peening 被引量:2
5
作者 Li-xing SUN Miao-quan Li Hui-min LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第9期1956-1963,共8页
The bulk TC17was subjected to the high energy shot peening(HESP)at the air pressures ranging from0.35to0.55MPa and processing durations ranging from15to60min.The microhardness(HV0.02)from topmost surface to matrix of ... The bulk TC17was subjected to the high energy shot peening(HESP)at the air pressures ranging from0.35to0.55MPa and processing durations ranging from15to60min.The microhardness(HV0.02)from topmost surface to matrix of the HESP processed TC17was measured,which generally decreases with the increase of depth from topmost surface to matrix and presents different variation with air pressure and processing duration at different depths.A fuzzy neural network(FNN)model was established to predict the surface layer microhardness of the HESP processed TC17,where the maximum and average difference between the measured and the predicted microhardness were respectively8.5%and3.2%.Applying the FNN model,the effects of the air pressure and processing duration on the microhardness at different depths were analyzed,revealing the significant interaction between the refined layer shelling and the continuous grain refinement. 展开更多
关键词 TC17 high energy shot peening MICROHARDNESS fuzzy neural network MODEL
在线阅读 下载PDF
Hardware Neural Networks Controlled MEMS Rotational Actuators and Application to Micro Robot
6
作者 Fumio Uchikoba Minami Takato Ken Saito 《Journal of Mechanics Engineering and Automation》 2012年第8期499-506,共8页
Hardware neural networks controlled rotational actuators and application to an insect type micro robot are reported in this paper. Millimeter size rotational actuators are fabricated by combining MEMS (Micro Electro ... Hardware neural networks controlled rotational actuators and application to an insect type micro robot are reported in this paper. Millimeter size rotational actuators are fabricated by combining MEMS (Micro Electro Mechanical System) technology and shape memory alloy based artificial muscle wires. The actuator is composed of a pair of disk rotators and each rotor is suspended by four artificial muscle wires that are connected to the silicon frame. The rotational motion is generated by flowing the electrical current to each wire successively. Two actuators of different sizes are fabricated. The large actuator shows the displacement of 0.5 mm at the cycle time of 4 s. The small actuator shows 0.3 mm at 2 s. For controlling the actuator, the hardware neural networks are used. The hardware neural networks are composed of electrical circuits imitating cell bodies, excitatory synapses and inhibitory synapses. Four signal ports are extracted from four pairs of excitatory and inhibitory neurons and they are connected to the actuator. The small actuator is applied to the robot and built in the mid body of the robot. The shaft of the actuator is connected to the link mechanisms that transform the rotational motion to the locomotion. The appearance dimensions of the robot are 4.0, 2.7, 2.5 mm width, length and height. The robot performs forward and backward foot step like insects. The speed is 26.4 mm·min^-1 and the stepping width is 0.88 mm. Also, the robot changes the direction by external trigger pulses. 展开更多
关键词 MEMS micro robot hardware neural networks ACTUATOR artificial muscle wire biomimetics.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部