Ga N微波功率管在基站通信等领域具有重要应用,其可靠性对相关设备的性能有直接影响。利用红外热像分析技术测量器件的峰值结温,基于专用射频加速老化试验系统,在频率为2.85 GHz、输入功率为40.5 d Bm、脉冲宽度为3 ms、占空比为30%的...Ga N微波功率管在基站通信等领域具有重要应用,其可靠性对相关设备的性能有直接影响。利用红外热像分析技术测量器件的峰值结温,基于专用射频加速老化试验系统,在频率为2.85 GHz、输入功率为40.5 d Bm、脉冲宽度为3 ms、占空比为30%的脉冲射频工作条件下,对S波段Ga N微波功率管进行了壳温为150℃的加速寿命试验。应用Arrhenius模型对试验结果进行了分析和计算,推导出该器件在壳温为90℃的工作条件下其平均失效时间可达2.97×106h。结果表明,采用此试验方法可以用来评估第三代Ga N微波功率器件的可靠性水平。展开更多
An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wi...An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.展开更多
A new 125mm UHV/CVD SiGe/Si epitaxy equipment SGE500 capable of commercialization is constructed and device-level SiGe HBT material is grown.A polysilicon emitter (PolyE) double mesa microwave power SiGe HBT showing e...A new 125mm UHV/CVD SiGe/Si epitaxy equipment SGE500 capable of commercialization is constructed and device-level SiGe HBT material is grown.A polysilicon emitter (PolyE) double mesa microwave power SiGe HBT showing excellent low current DC characteristics with β=60@V CE/I C=9.0V/300μA,β=100@5V/50mA,BV CBO=22V,f t/f max=5.4GHz/7.7GHz@3V/10mA is demonstrated.The PolyE SiGe HBT needs only 6 lithographical steps and cancels the growth of the thick emitter epitaxy layer,both of which show great potential for volume production.A 60-finger class-A SiGe linear power amplifer (PA) w ith 22dBm of 1dB compress point output power (P 1dB),11dB of power gain (G p) and 26.1% of power added efficiency (PAE) @900MHz,3.5V/0.2A is demonstrated.Another 120-finger class-A SiGe PA with 33.3dBm (2.1W) of P out,10.3dB of G p and 33.9% of PAE @900MHz,11V/0.52A is also demonstrated.展开更多
文摘An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.
文摘A new 125mm UHV/CVD SiGe/Si epitaxy equipment SGE500 capable of commercialization is constructed and device-level SiGe HBT material is grown.A polysilicon emitter (PolyE) double mesa microwave power SiGe HBT showing excellent low current DC characteristics with β=60@V CE/I C=9.0V/300μA,β=100@5V/50mA,BV CBO=22V,f t/f max=5.4GHz/7.7GHz@3V/10mA is demonstrated.The PolyE SiGe HBT needs only 6 lithographical steps and cancels the growth of the thick emitter epitaxy layer,both of which show great potential for volume production.A 60-finger class-A SiGe linear power amplifer (PA) w ith 22dBm of 1dB compress point output power (P 1dB),11dB of power gain (G p) and 26.1% of power added efficiency (PAE) @900MHz,3.5V/0.2A is demonstrated.Another 120-finger class-A SiGe PA with 33.3dBm (2.1W) of P out,10.3dB of G p and 33.9% of PAE @900MHz,11V/0.52A is also demonstrated.