In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the drivin...In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the driving force and shear force (due to the walls). Effects of contact line pinning is considered by adding a three-phase contact line force, and also considering dynamic contact angle which modifies the mierodroplet boundary conditions. Since air is used as the filler fluid, the drag force is neglected. Although energy equation is not solved (constant temperature assumption), effects of the evaporation is considered from two aspects: It is shown that an additional force is needed to balance the dynamic equation of the mierodroplet motion. Also, at each time step the microdroplet interface has to be deformed due to the change in the microdroplet radius. Important findings of the proposed model includes the transient velocity and displacement of the microdroplet as well as the driving and opposing forces acting on the microdroplet as functions of time. It is shown that mass loss due to evaporation tends to accelerate the droplet; whereas the competitive effect of the reduced driving force decelerates the droplet at the end of motion. The modeling results indicate that evaporation plays a crucial role in microdroplet motion by changing the force balance and the microdroplet boundary condition.展开更多
Morphology of synthetic imogolite nanotubes formed in droplet evaporation was investigated by transmission electron microscopy and electron diffraction. The nanotubes form a dense entangled network at higher concentra...Morphology of synthetic imogolite nanotubes formed in droplet evaporation was investigated by transmission electron microscopy and electron diffraction. The nanotubes form a dense entangled network at higher concentrations,while at lower concentrations the nanotubes are liable to form ori-ented bundles. Under enthanol atmosphere,individual dispersion of nanotubes was observed for the first time,which reveals the length polydispersity of synthetic imogolite nanotubes.展开更多
The formations of desiccation cracks and their pattems in drying droplets of protein solutions are studied experimentally. The solvent evaporation causes the dehydration self-organization phenomenon in colloidal dropl...The formations of desiccation cracks and their pattems in drying droplets of protein solutions are studied experimentally. The solvent evaporation causes the dehydration self-organization phenomenon in colloidal droplets, followed by the formations of desiccation cracks. Two categories of highly ordered crack patterns, which we name "daisy" and "wavy-ring", are identified in the drying droplets. We explore the shifting of crack patterns from the "daisy" to the "wavy-ring" by varying the concentration of protein droplets. The results show that the concentration correlates with the pattern of deposition film directly, and modulates the periodicity of the crack pattern. We investigate the formations and periodicities of these two kinds of crack patterns, and obtain the scaling law of periodicity of the "wavy-ring" crack pattern. The relationship between the deposition pattern and the highly ordered crack patterns is also examined. This study will help in understanding the formation mechanisms of crack patterns in drying droplets of protein solutions and assist the future design of crack patterns in practical applications.展开更多
文摘In this paper, an electrohydrodynamic approach is used to model and study dynamics of evaporating microdroplets in digital microfluidic systems. A numerical eleetrohydrodynamic approach is used to calculate the driving force and shear force (due to the walls). Effects of contact line pinning is considered by adding a three-phase contact line force, and also considering dynamic contact angle which modifies the mierodroplet boundary conditions. Since air is used as the filler fluid, the drag force is neglected. Although energy equation is not solved (constant temperature assumption), effects of the evaporation is considered from two aspects: It is shown that an additional force is needed to balance the dynamic equation of the mierodroplet motion. Also, at each time step the microdroplet interface has to be deformed due to the change in the microdroplet radius. Important findings of the proposed model includes the transient velocity and displacement of the microdroplet as well as the driving and opposing forces acting on the microdroplet as functions of time. It is shown that mass loss due to evaporation tends to accelerate the droplet; whereas the competitive effect of the reduced driving force decelerates the droplet at the end of motion. The modeling results indicate that evaporation plays a crucial role in microdroplet motion by changing the force balance and the microdroplet boundary condition.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50403008 and 20423003)the NSFC Fund for Creative Research Groups (Grant No. 50621302)
文摘Morphology of synthetic imogolite nanotubes formed in droplet evaporation was investigated by transmission electron microscopy and electron diffraction. The nanotubes form a dense entangled network at higher concentrations,while at lower concentrations the nanotubes are liable to form ori-ented bundles. Under enthanol atmosphere,individual dispersion of nanotubes was observed for the first time,which reveals the length polydispersity of synthetic imogolite nanotubes.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1562105,11372313)the Chinese Academy of Sciences through CAS Interdisciplinary Innovation Team Project+1 种基金the Chinese Academy of Sciences Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-JSC019)the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDB22040401)
文摘The formations of desiccation cracks and their pattems in drying droplets of protein solutions are studied experimentally. The solvent evaporation causes the dehydration self-organization phenomenon in colloidal droplets, followed by the formations of desiccation cracks. Two categories of highly ordered crack patterns, which we name "daisy" and "wavy-ring", are identified in the drying droplets. We explore the shifting of crack patterns from the "daisy" to the "wavy-ring" by varying the concentration of protein droplets. The results show that the concentration correlates with the pattern of deposition film directly, and modulates the periodicity of the crack pattern. We investigate the formations and periodicities of these two kinds of crack patterns, and obtain the scaling law of periodicity of the "wavy-ring" crack pattern. The relationship between the deposition pattern and the highly ordered crack patterns is also examined. This study will help in understanding the formation mechanisms of crack patterns in drying droplets of protein solutions and assist the future design of crack patterns in practical applications.