Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbo...The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.展开更多
In this work, commercially pure Zr sheets were subjected to β air cooling and then rolled to different reductions(10% and 50%)at room temperature. Microstructures of both the β-air-cooled and the rolled specimens we...In this work, commercially pure Zr sheets were subjected to β air cooling and then rolled to different reductions(10% and 50%)at room temperature. Microstructures of both the β-air-cooled and the rolled specimens were well characterized by electron channelling contrast imaging and electron backscatter diffraction techniques, with special attentions paid to their misorientation characteristics. Results show that the β-air-cooled specimen owns a Widmanst?tten structure featured by lamellar grains with typical phase transformation misorientations. The 10% rolling allows prismatic slip and tensile twinning({11-21}<11-2-6> and{10-12}<10-11>) to be activated profusely, which produce new low-angle(~3°–5°) and high-angle(~35° and ~85°) misorientation peaks, respectively. After increasing the rolling reduction to 50%, twinning is suppressed and dislocation slip becomes the dominant deformation mode, with the lamellar grains highly elongated and aligned towards the rolling direction.Meanwhile, only one strong low-angle misorientation peak related to the prismatic slip is presented in the 50%-rolled specimen,with all other peaks disappeared. Analyses on local misorientations reveal that hardly any residual strains exist in the β-air-cooled specimen, which should be related to their sufficient relaxation during slow cooling. Residual strains introduced by 10% rolling are heterogeneously distributed near grain/twin boundaries while heavier deformation(50% rolling) produces much larger residual strains pervasively existing throughout the specimen microstructure.展开更多
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
基金the Fundamental Research Funds for the Central Universities of China(No.N2101023).
文摘The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.
基金supported by the Fundamental and Cutting-Edge Research Plan of Chongqing(Grant Nos.cstc2017jcyj AX0114&cstc2016jcyj A0434)the National Natural Science Foundation of China(Grant Nos.51401040,51601075&51601165)
文摘In this work, commercially pure Zr sheets were subjected to β air cooling and then rolled to different reductions(10% and 50%)at room temperature. Microstructures of both the β-air-cooled and the rolled specimens were well characterized by electron channelling contrast imaging and electron backscatter diffraction techniques, with special attentions paid to their misorientation characteristics. Results show that the β-air-cooled specimen owns a Widmanst?tten structure featured by lamellar grains with typical phase transformation misorientations. The 10% rolling allows prismatic slip and tensile twinning({11-21}<11-2-6> and{10-12}<10-11>) to be activated profusely, which produce new low-angle(~3°–5°) and high-angle(~35° and ~85°) misorientation peaks, respectively. After increasing the rolling reduction to 50%, twinning is suppressed and dislocation slip becomes the dominant deformation mode, with the lamellar grains highly elongated and aligned towards the rolling direction.Meanwhile, only one strong low-angle misorientation peak related to the prismatic slip is presented in the 50%-rolled specimen,with all other peaks disappeared. Analyses on local misorientations reveal that hardly any residual strains exist in the β-air-cooled specimen, which should be related to their sufficient relaxation during slow cooling. Residual strains introduced by 10% rolling are heterogeneously distributed near grain/twin boundaries while heavier deformation(50% rolling) produces much larger residual strains pervasively existing throughout the specimen microstructure.