期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
基于总体平均经验模态分解的语音增强算法研究 被引量:4
1
作者 陈建明 杨龙 《计算机应用与软件》 2017年第9期328-333,共6页
总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD... 总体平均经验模态分解EEMD(Ensemble Empirical Mode Decomposition)虽然能够在一定程度上抑制模态混淆,但添加的白噪声不能被完全中和,对所有本征模态函数IMF(Intrinsic Mode Function)分量进行集成平均等增加了计算工作量。基于EEMD和结合小波阈值去噪思想,提出改进的EEMD方法。首先对原始信号进行EEMD分解,得到一系列IMF分量;其次对筛选后的每个IMF计算噪声强度;然后采用小波启发式阈值估计噪声并计算阈值;最后以软阈值的方式滤除每个IMF中噪声并重构信号还原出增强的语音。通过分析仿真信号和实测信号,结果表明:该算法对带噪语音有很好的滤波效果,与其他同类算法相比提高信噪比2~4 d B。 展开更多
关键词 总体平均经验模态分解(eemd) 小波阈值去噪 语音增强算法
在线阅读 下载PDF
基于总体平均经验模态分解和一步式字典学习联合去噪的语音端点检测算法 被引量:3
2
作者 张开生 赵小芬 +1 位作者 王泽 宋帆 《科学技术与工程》 北大核心 2020年第35期14536-14542,共7页
针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先... 针对复杂环境下语音端点检测准确率低且检测耗时过长的问题,提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和一步式字典学习(one-stage dictionary learning,OS-DL)联合去噪的语音端点检测算法。首先利用EEMD算法对输入语音进行分解得到本征模式分量(intrinsic mode function,IMF),然后使用OS-DL算法分别对纯净语音信号与噪声信号进行训练,得到纯净语音信号和噪声信号的幅度谱字典,进而对幅度谱进行稀疏表示,利用得到的系数矩阵重新构建出语音信号频谱,将重构出的语音信号频谱经过傅里叶逆变换得到降噪后的语音信号,最后对降噪后的语音信号利用均匀子带频带方差法进行端点检测。实验结果表明,该算法在复杂环境信噪比低于-10 dB情况下检测准确率仍可达到85%以上,且平均检测时间缩短至传统端点检测算法的1/3。 展开更多
关键词 总体平均经验模态分解(eemd)算法 一步式字典(OS-DL)算法 稀疏表示 子带频带方差 端点检测
在线阅读 下载PDF
基于总体平均经验模态分解的主动噪声控制系统研究 被引量:4
3
作者 罗磊 黄博妍 +1 位作者 孙金玮 温良 《自动化学报》 EI CSCD 北大核心 2016年第9期1432-1439,共8页
为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intr... 为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intrinsic mode functions,IMF)分量.因为这些IMF分量的频带各不相同,所以实现了混合噪声中宽带分量和窄带分量的有效分离,独立进行ANC处理后成功解决了处理混合噪声时带来的"火花"现象,而且避免了传统混合ANC(Hybrid ANC,HANC)系统中频率失调的影响.EEMD算法也是对混合噪声的平稳化处理过程,因此当混合噪声中出现非平稳变化时,本文提出的系统也能保持较好的系统稳定性.通过不同噪声环境下进行仿真分析,提出的ANC系统比HANC系统具有更好的系统稳定性和更小的稳态误差. 展开更多
关键词 混合噪声 主动噪声控制 总体平均经验模态分解 固有模态函数 非平稳变化
在线阅读 下载PDF
基于总体平均经验模态分解残差的故障诊断方法 被引量:3
4
作者 耿志强 王尊 +1 位作者 顾祥柏 林晓勇 《南京理工大学学报》 EI CAS CSCD 北大核心 2015年第3期293-300,共8页
为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差... 为了提高化工过程故障诊断的效率,基于残差对故障状态具有敏感性以及经验模态分解(EMD)无需建模仅依据输入输出数据分析的优势,提出了一种基于总体平均经验模态分解(EEMD)残差进行故障诊断的新方法。基于历史数据的6σ控制图,确定残差的故障诊断控制限。利用在线实时数据采用贝叶斯信息准则在线确定EEMD的移动窗口。基于移动窗口的采样数据,在线获得EEMD残差最大值的变化,结合相应的故障诊断控制限在线诊断故障并确定故障发生时间及原因。该文方法与传统的希尔伯特谱分析方法相比,具有可在线诊断故障的优势,提高了故障诊断的准确率。将该文方法用于田纳西-伊士曼(TE)过程的故障在线诊断,验证了其有效性。 展开更多
关键词 总体平均经验模态分解 残差 故障诊断 贝叶斯信息准则 希尔伯特谱 田纳西-伊士曼过程
在线阅读 下载PDF
基于总体平均经验模态分解的局部场电位相位同步信息编码研究
5
作者 师黎 吴孔海 +1 位作者 王治忠 牛晓可 《科学技术与工程》 北大核心 2013年第28期8249-8258,共10页
局部场电位的相位特征是表达外界刺激信息的重要度量,对神经信息的传递与表达具有重要作用。以Long Evans大鼠为实验对象,以12个朝向的全屏光栅作为刺激图像,用多通道微电极阵列信号采集系统获取局部场电位信号。采用总体平均经验模态... 局部场电位的相位特征是表达外界刺激信息的重要度量,对神经信息的传递与表达具有重要作用。以Long Evans大鼠为实验对象,以12个朝向的全屏光栅作为刺激图像,用多通道微电极阵列信号采集系统获取局部场电位信号。采用总体平均经验模态分解的方法获取局部场电位的不同分量,通过Hilbert提取不同分量的瞬时相位,用相位锁定值来进行相位同步分析。结果发现局部场电位采用总体平均经验模态分解后,主频带范围在40 Hz^100 Hz之间的第三固有模态分量具有最佳的朝向选择性,且编码精度和稳定性均优于经验模态分解和γ频带提取的结果。 展开更多
关键词 局部场电位 总体平均经验模态分解 光栅 相位同步
在线阅读 下载PDF
一种基于总体平均经验模态分解的线谱提取方法 被引量:2
6
作者 刘千里 《舰船电子工程》 2020年第6期40-42,88,共4页
为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船... 为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船辐射噪声仿真信号分析,该方法能有效地提取舰船辐射噪声的线谱,与小波分析方法进行对比分析后表明,EEMD对信号的分析比小波分析有一定的优越性,而且因EEMD能够突出信号局部特征,对线谱能量有一定的增益。 展开更多
关键词 总体平均经验模态分解 辐射噪声 小波变换 线谱
在线阅读 下载PDF
基于总体经验模态分解和CoDE-BP短期风速预测 被引量:1
7
作者 胡亚兰 陈亮 +1 位作者 余相 王丹 《计算机技术与发展》 2019年第2期195-201,共7页
预测问题是应用机器学习的研究热点之一,是计算机技术领域在实际工程的重要应用,然而由于风速具有随机性、波动性等特性,导致风速预测存在准确率低的问题。为了提高风速预测的准确性,将总体经验模态分解(EEMD)方法引入到组合差分进化算... 预测问题是应用机器学习的研究热点之一,是计算机技术领域在实际工程的重要应用,然而由于风速具有随机性、波动性等特性,导致风速预测存在准确率低的问题。为了提高风速预测的准确性,将总体经验模态分解(EEMD)方法引入到组合差分进化算法(CoDE)和前馈(BP)神经网络中,提出了一种新颖的混合风速预测模型(EEMD-CoDE-BP)。利用EEMD将原始风速信号分解成一系列不同频率的子序列IMFs和残差序列r,通过每个子序列训练CoDE-BP模型,最终的风速预测结果由每个子序列预测结果等权求和得到。以国内某风电场每10 min、1 h采样间隔的风速数据进行MATLAB仿真,对比包括传统的Elman神经网络(ENN)、小波神经网络(WNN)、BP、CoDE-BP和EMD-CoDE-BP等算法,仿真结果表明所提方法能对风速进行准确有效的预测,极大地提高了预测精度,减小了预测误差。 展开更多
关键词 短期风速预测 总体经验模态分解 组合差分进化算法 前馈神经网络
在线阅读 下载PDF
基于集合经验模态的随钻脉冲信号优良降噪算法 被引量:26
8
作者 郑一 孙晓峰 +1 位作者 陈健 岳军 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2012年第6期750-753,共4页
为了准确提取原始随钻钻井液脉冲信号,采用集合经验模态分解方法,基于固有模态分量构建不同的低通滤波算法,进一步采取方波整形处理,建立脉冲信号的降噪整形算法,并依据算法逼近度指标、相关度指标建立优良降噪算法的判断准则。利用单... 为了准确提取原始随钻钻井液脉冲信号,采用集合经验模态分解方法,基于固有模态分量构建不同的低通滤波算法,进一步采取方波整形处理,建立脉冲信号的降噪整形算法,并依据算法逼近度指标、相关度指标建立优良降噪算法的判断准则。利用单位脉冲信号、周期性杂波信号和高斯白噪声信号合成数值模拟钻井液信号,分析钻井液信号的降噪效果,所得优良降噪低通滤波算法由去掉前4个固有模态分量的其余模态分量及余项构成,其降噪结果能清晰描述单位脉冲信号,算法的逼近度达到0.7719,相关度高达0.8929。利用选定的优良降噪算法分析了实测的随钻测量钻井液信号,所得结果合理、有效。 展开更多
关键词 脉冲信号 集合经验模态分解(eemd) 低通滤波 优良降噪算法
在线阅读 下载PDF
完备总体平均局部特征尺度分解及其在转子故障诊断中的应用 被引量:13
9
作者 郑近德 程军圣 +1 位作者 聂永红 罗颂荣 《振动工程学报》 EI CSCD 北大核心 2014年第4期637-646,共10页
作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IM... 作为对经验模态分解(EMD)的改进,局部特征尺度分解(LCD)也有类似EMD的模态混淆问题。基于噪声辅助分析的总体平均经验模态分解(EEMD)和完备的EEMD(CEEMD)等是抑制分解模态混淆的有效途径。然而此类方法伪分量较多、得到的分量未必满足IMF分量定义等。针对此,提出了一种完备的总体平均局部特征尺度分解(CELCD),并通过仿真信号将CELCD方法与CEEMD进行了对比,结果表明CELCD能够有效抑制LCD模态混淆,而且在抑制伪分量的产生,提高正交性和分量的精确性等方面具有一定的优越性。最后论文将CELCD方法应用于转子碰摩故障的诊断,结果表明了方法的有效性。 展开更多
关键词 故障诊断 模态混淆 局部特征尺度分解 完备总体平均局部特征尺度分解 总体平均经验模态分解
在线阅读 下载PDF
基于变分模态分解算法的单通道无线电混合信号分离 被引量:9
10
作者 江春冬 王景玉 +2 位作者 杜太行 郝静 龙超 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第12期1618-1626,共9页
针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解... 针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解(EEMD)算法进行对比,得出前者分离出的信号在时域、频域及信噪比和相似系数等方面均比后者取得的对应结果效果好的结论.然后对VMD算法的参数利用改进的量子粒子群优化算法进行优化,确定所需分量个数和惩罚因子的值.最后对VMD算法分离后的信号使用参数优化后的VMD算法进行细分离.数值模拟和实验信号分析结果均表明,再次分离后所得到的信号精度较利用VMD算法对单通道无线电混合信号进行粗分离时更高,证明了所提算法对单通道无线电混合信号分离的有效性. 展开更多
关键词 变分模态分解 总体平均经验模态分解 改进的量子粒子群优化
在线阅读 下载PDF
EEMD-RobustICA和Prony算法在电力系统低频振荡模态辨识中的应用 被引量:10
11
作者 赵峰 吴梦娣 《太阳能学报》 EI CAS CSCD 北大核心 2019年第10期2919-2929,共11页
针对互联电网低频振荡辨识过程中Prony算法对噪声敏感的问题,该文将总体经验模态分解法、鲁棒性独立分量分析方法与Prony进行有机结合,运用到关键振荡模式辨识中。将待处理信号进行总体经验模态分解后得到的本征模态函数作为鲁棒性独立... 针对互联电网低频振荡辨识过程中Prony算法对噪声敏感的问题,该文将总体经验模态分解法、鲁棒性独立分量分析方法与Prony进行有机结合,运用到关键振荡模式辨识中。将待处理信号进行总体经验模态分解后得到的本征模态函数作为鲁棒性独立分量分析算法的输入,对得到的独立分量进行软阈值去噪后进行反变换得到重构后的本征模态函数,接着将重构后的本征模态函数相加得到去噪信号,用Prony算法对去噪信号进行辨识,最终得到低频振荡的模态参数。仿真结果表明:该方法综合利用了总体经验模态分解不依赖信号任何先验知识和完全由数据驱动的自适应性优点,及鲁棒性独立分量分析提取独立分量并保持分量信号完整性的优势,相比传统总体经验模态分解去噪算法,该方法在没有损失信号的前提下可提高分量信号的信噪比,克服Prony算法对噪声敏感的缺陷,更大程度去除噪声,有利于提高辨识精度和准确性,更能满足实际应用需求。 展开更多
关键词 总体经验模态分解 鲁棒性独立分量分析 PRONY算法 低频振荡 模式辨识
在线阅读 下载PDF
基于集合经验模态分解和BP神经网络的北京市PM2.5预报研究 被引量:5
12
作者 任晓晨 邹思琳 +1 位作者 唐娴 韦骏 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期615-625,共11页
利用集合经验模态分解算法(EEMD)和BP神经网络组成的混合模型,对北京城区PM2.5浓度值进行短期预报。结果表明,与单独使用BP神经网络模型相比,EEMD-BP混合模型的预报准确率更高;混合模型高频部分的预报误差是整体误差的主要方面;混合模... 利用集合经验模态分解算法(EEMD)和BP神经网络组成的混合模型,对北京城区PM2.5浓度值进行短期预报。结果表明,与单独使用BP神经网络模型相比,EEMD-BP混合模型的预报准确率更高;混合模型高频部分的预报误差是整体误差的主要方面;混合模型的输入变量中需包含输出变量的信息;前期污染物浓度的数值对模型的预报结果有较大的影响。 展开更多
关键词 集合经验模态分解算法(eemd) BP神经网络 PM2.5预报
在线阅读 下载PDF
基于CEEMD-WPT的滚动轴承特征提取算法 被引量:12
13
作者 王丽华 陶润喆 +2 位作者 张永宏 赵晓平 谢阳阳 《振动.测试与诊断》 EI CSCD 北大核心 2017年第1期181-188,共8页
为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号... 为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号提取算法。两种方法的结合既有效解决了CEEMD分解后依然存在的模态混叠问题,又消除了进行WPT处理后产生虚假频率分量、频率混淆现象的影响。通过仿真试验验证了该方法的有效性,并应用于实际,取得很好的结果。 展开更多
关键词 滚动轴承 小波包变换 互补总体平均经验模态分解 特征提取
在线阅读 下载PDF
基于解相关CEEMD的滚动轴承特征信号提取算法研究 被引量:4
14
作者 张永宏 陶润喆 +1 位作者 王丽华 谢阳阳 《制造技术与机床》 北大核心 2016年第11期78-84,共7页
近年来随着时频分析方法希尔伯特黄变换的提出,经验模态分解(Empirical Mode Decomposition,EMD)已经在滚动轴承信号处理中得到了应用。但不管EMD还是其改进的互补总体平均经验模态分解(Complementary Ensemble Empirical Mode Decompos... 近年来随着时频分析方法希尔伯特黄变换的提出,经验模态分解(Empirical Mode Decomposition,EMD)已经在滚动轴承信号处理中得到了应用。但不管EMD还是其改进的互补总体平均经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD),到目前为止依然都存在着模态混叠现象。为了实现特征信号的精确提取,需要对分解后产生模态混叠的部分予以修正,从而保证各固有模态函数(Intrinsic Mode Function,IMF)分量之间互不耦合(即正交)。针对这一问题提出了解相关与CEEMD相结合的算法。该方法首先运用CEEMD自适应分解的能力对信号进行细节的提取,然后对分解后依然存在的少量频率混叠部分利用解相关运算予以修正,实现对特征频率信号的提取,从而解决了频率混叠问题。通过仿真试验验证了该方法的有效性,并将该方法应用于旋转机械振动信号的特征频率成分的提取中,取得很好的效果。 展开更多
关键词 模态混叠 互补总体平均经验模态分解 解相关 特征提取
在线阅读 下载PDF
基于振动及EEMD-CMAC算法的鸭蛋散黄在线检测 被引量:1
15
作者 卢伟 丁婧 +2 位作者 罗慧 王玲 代德建 《农业工程学报》 EI CAS CSCD 北大核心 2016年第21期282-289,共8页
针对鸭蛋长期存储以及运输过程中造成的散黄问题,构建一种基于振动信息的鸭蛋散黄在线检测流水线,可实现鸭蛋的自动触压和随动检测。通过磁致伸缩振子对鸭蛋扫频振动进行音频信息增强,对音频振动信号进行集合经验模态分解,并通过主成分... 针对鸭蛋长期存储以及运输过程中造成的散黄问题,构建一种基于振动信息的鸭蛋散黄在线检测流水线,可实现鸭蛋的自动触压和随动检测。通过磁致伸缩振子对鸭蛋扫频振动进行音频信息增强,对音频振动信号进行集合经验模态分解,并通过主成分分析进行降维提取主要特征,基于此,构建基于小脑神经网络的鸭蛋散黄检测模型。试验中,对320枚鸭蛋进行检测(训练集200枚,测试集120枚),结果表明,基于累积贡献率达98.14%的前5个主成分的鸭蛋散黄检测模型训练集和测试集识别率分别达98.66%和97.03%,每枚鸭蛋在线检测时间约1 s。研究表明,所研制的检测流水线基于磁致伸缩振子扫频激励未知品质鸭蛋,再结合EEMD-CMAC进行鸭蛋散黄检测是可行的,可满足流水线在线检测的要求。 展开更多
关键词 无损检测 算法 模型 集合经验模态分解(eemd) 小脑神经网络(CMAC) 鸭蛋散黄
在线阅读 下载PDF
自适应的EEMD残余相关基线校正算法 被引量:1
16
作者 赵肖宇 方一鸣 +3 位作者 关勇 王志刚 佟亮 谭峰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第6期1624-1628,共5页
基线校正是光谱分析的重要环节,现有算法通常需要设定关键参数,不具备自适应性。根据总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)残余量特点,提出用残余量拟合光谱基线。通过残余量与信号相关性、残余量自相关... 基线校正是光谱分析的重要环节,现有算法通常需要设定关键参数,不具备自适应性。根据总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)残余量特点,提出用残余量拟合光谱基线。通过残余量与信号相关性、残余量自相关和互相关性(称为残余相关准则)判断残余量是否是基线组成部分,以此为基础提出一种自适应的EEMD残余相关基线校正算法。对叠加曲线背景和线性背景的模拟光谱数据进行实验,结果显示在已知基线数学假设情况下,EEMD残余相关法逊于多项式拟合,同非线性拟合相差不多,优于小波分解。在没有光谱背景知识情况下,对真实拉曼光谱数据进行试验。经过上述方法预处理过的玉米叶片光谱采用3层BP神经网络建立与叶绿素之间预测模型,经过残余相关基线校正的模型具有最大校正相关系数和预测相关系数,最小交叉验证标准差和相对分析误差。各种基线校正方法中,残余相关基线校正对特征峰峰位、峰强和峰宽影响最小。实验表明,该算法可用于拉曼谱图基线校正,无需分析样品成分的先验知识,无需选择合适的拟合函数、拟合数据点、拟合阶次以及基函数和分解层数,也无需基线信号分布的数学假设,自适应性很强。 展开更多
关键词 总体平均经验模态分解 残余量 相关性 基线校正 自适应性
在线阅读 下载PDF
基于EEMD域统计模型的话音激活检测算法 被引量:2
17
作者 吴其前 张雄伟 《数据采集与处理》 CSCD 北大核心 2012年第1期51-56,共6页
提出了一种基于EEMD域统计模型的话音激活检测算法。算法首先利用总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)对带噪语音进行分解,得到信号的本征模式函数(Intrinsicmode function,IMF)分量,选择与原信号的相关... 提出了一种基于EEMD域统计模型的话音激活检测算法。算法首先利用总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)对带噪语音进行分解,得到信号的本征模式函数(Intrinsicmode function,IMF)分量,选择与原信号的相关性最高的两个分量相加组成主分量;然后对主分量进行频域分解,引入统计模型,求出EEMD域特征参数;最后利用噪声与语音的EEMD域特征参数的不同来进行语音激活检测。实验结果表明,在不同信噪比情况下,本文算法性能优于目前常用的VAD算法,特别在噪声强度大时体现出明显的优势。 展开更多
关键词 话音激活检测 经验模式分解 总体平均经验模式分解 eemd域统计模型
在线阅读 下载PDF
基于CEEMD和机器学习算法的短期风速组合预测 被引量:2
18
作者 常雨芳 段群龙 +2 位作者 陈润 李金榜 吴锋 《实验室研究与探索》 CAS 北大核心 2021年第10期131-137,共7页
风速的准确预测对电网的稳定和电力系统的安全运行非常重要。针对风速的非线性和非平稳性特征,提出基于完备总体经验模态分解(CEEMD)结合神经网络和最小二乘支持向量机(LSSVM)的短期风速组合预测模型。利用CEEMD将原始风速时间序列分解... 风速的准确预测对电网的稳定和电力系统的安全运行非常重要。针对风速的非线性和非平稳性特征,提出基于完备总体经验模态分解(CEEMD)结合神经网络和最小二乘支持向量机(LSSVM)的短期风速组合预测模型。利用CEEMD将原始风速时间序列分解成有限个特征互异的模态分量;高频分量利用组合神经网络进行模拟预测,中低频分量使用LSSVM构建预测模型;对每一子序列预测结果进行重构,使用灰狼优化算法对权重矩阵实时调整,确定组合模型的最优权系数,得到最终预测值。经对国内某风电场进行实验,结果表明:组合风速预测模型具有较好的预测能力,在短期风速预测方面的可行性与有效性。 展开更多
关键词 风速预测 完备总体经验模态分解 组合神经网络 最小二乘支持向量机 灰狼优化算法
在线阅读 下载PDF
基于EEMD的ICA算法在轴承-丝杠复合故障诊断中的应用
19
作者 李善 谭继文 俞昆 《机床与液压》 北大核心 2016年第23期160-163,共4页
提出了一种基于EEMD的ICA算法,旨在解决单通道轴承-丝杠复合故障的信号分离。首先通过EEMD分解,将复合信号分解在不同的通道中,得到一系列IMF分量;再计算各IMF的峭度值和相关系数值,选取数值较大的几个IMF分量,与原始信号重新组成一组... 提出了一种基于EEMD的ICA算法,旨在解决单通道轴承-丝杠复合故障的信号分离。首先通过EEMD分解,将复合信号分解在不同的通道中,得到一系列IMF分量;再计算各IMF的峭度值和相关系数值,选取数值较大的几个IMF分量,与原始信号重新组成一组观测信号,作为ICA的输入,得到一系列IC分量;最后选取含有冲击成分较大的IC分量,进行包络分析,对故障类型进行诊断识别。通过实验成功分离并识别出两种故障类型,证明了该方法的有效性。 展开更多
关键词 总体平均经验模态分解(eemd) 独立分量分析(ICA) 峭度指标 相关系数 复合故障 故障诊断
在线阅读 下载PDF
基于WPES与MEEMD的船用主机振动研究 被引量:1
20
作者 吴刚 江国栋 +1 位作者 闫国华 陈晓东 《舰船科学技术》 北大核心 2024年第4期103-108,共6页
为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工... 为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工况下低速机的表面振动信号进行3层小波包分解和重构。通过对能量占比较大的节点采用MEEMD方法进行分解,获得IMF1分量频谱。研究结果表明,在40%以下的较低发动机负荷时,各单次燃烧循环的振动波动较小,振动幅值基本一致。提升至50%以上发动机负荷时,燃烧引起振动波动明显增强。50%工况下,中高频能量占总能量的41.51%,为主要振动源。 展开更多
关键词 船用低速柴油机 小波包能量谱 改进的总体平均经验模态分解 振动特性 状态评估
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部