期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于Zernike矩和感知机神经网络的白细胞显微图像分类的研究 被引量:1
1
作者 张立伟 张亚平 《吉林师范大学学报(自然科学版)》 2007年第3期82-84,共3页
本文介绍了用Zernike矩和感知机神经网络识别白细胞的方案.采用数字图像处理技术和模式识别技术实现了白细胞显微图像的自动识别.试验结果表明,利用白细胞显微图像不同阶Zernike矩形成矩向量作为特征,再利用感知机神经网络进行识别分类... 本文介绍了用Zernike矩和感知机神经网络识别白细胞的方案.采用数字图像处理技术和模式识别技术实现了白细胞显微图像的自动识别.试验结果表明,利用白细胞显微图像不同阶Zernike矩形成矩向量作为特征,再利用感知机神经网络进行识别分类具有很好的识别效果. 展开更多
关键词 ZERNIKE矩 感知机神经网络 白细胞 自动识别
在线阅读 下载PDF
基于知识采纳模型和多层感知机神经网络的评论有用性识别研究 被引量:7
2
作者 张婧 周怡欣 +1 位作者 胡涵 卞亦文 《中国管理科学》 CSSCI CSCD 北大核心 2022年第4期264-274,共11页
移动互联网、社交媒体平台及电子商务的迅速发展,产生了大量的用户评论,其商业价值凸显,如何有效识别用户评论的有用性成为重要研究主题。本文提出基于知识采纳模型(Knowledge Adoption Model,KAM)理论和多层感知机(Multilayer Perceptr... 移动互联网、社交媒体平台及电子商务的迅速发展,产生了大量的用户评论,其商业价值凸显,如何有效识别用户评论的有用性成为重要研究主题。本文提出基于知识采纳模型(Knowledge Adoption Model,KAM)理论和多层感知机(Multilayer Perceptron,MLP)神经网络的分类算法对评论文本进行有用性识别。该算法根据知识采纳模型理论从评论质量和评论来源可信度两方面进行评论有用性识别的特征提取:利用先验领域知识词典构造领域词占比、停用词占比等评论质量方面的特征,有效解决了特定领域评论存在的领域知识壁垒问题;根据评论作者的粉丝数、作者获赞数等信息构建评论来源可信度方面的特征。为了验证本文所提方法的识别效果,本文采用知乎论坛中医相关评论数据进行实验;实验结果表明,本文提出的方法能有效提高在线评论有用性的分类效果,提高了可解释性。 展开更多
关键词 在线评论 评论信息有用性 知识采纳模型 多层感知机神经网络
原文传递
Koopman原理内嵌MLP神经网络模型驱动的电力系统非线性振荡特征分析方法
3
作者 周一辰 李金泽 +3 位作者 李永刚 陈鹏伟 郭通 孙浩潮 《电力自动化设备》 EI CSCD 北大核心 2024年第10期132-139,共8页
针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时... 针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时序演化中的作用。采用MLP神经网络构建编码、解码映射,进而形成Koopman原理内嵌的神经网络深度学习模型,通过深度学习实现非线性系统“编码映射-线性演化-解码映射”3种结构的演化逼近。分析了将所提方法应用于电力系统动态特性分析的物理机理,建立了所提方法的求解与应用流程。通过单机与4机系统算例对所提方法进行对比验证,结果表明所提方法可以精确表征平衡点稳定域内的系统动态过程,可用于电力系统非线性振荡动态特性解析。 展开更多
关键词 电力系统 非线性振荡 Koopman算子理论 多层感知机神经网络 科学人工智能
在线阅读 下载PDF
基于多特征因子的路用集料粒径计算神经网络模型 被引量:6
4
作者 裴莉莉 孙朝云 +3 位作者 户媛姣 李伟 高尧 郝雪丽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期77-86,共10页
在道路施工及养护过程中,高效、准确地测量沥青混合料中的集料级配是保证混合料骨架结构稳定及施工质量的重要环节。针对基于单一几何模型应用在粗集料颗粒分档时,存在粒径计算不准确、无法满足施工要求的问题,文中提出一种基于多特征... 在道路施工及养护过程中,高效、准确地测量沥青混合料中的集料级配是保证混合料骨架结构稳定及施工质量的重要环节。针对基于单一几何模型应用在粗集料颗粒分档时,存在粒径计算不准确、无法满足施工要求的问题,文中提出一种基于多特征因子的路用集料粒径计算神经网络模型,实现对集料颗粒粒径的准确计算。首先,对采集到的集料颗粒图像进行几何特征提取,并对提取到的特征数据进行数据清洗和归一化等处理,建立样本数据集;然后通过相关性分析,提取出与集料粒径相关性较强的特征因子;最后,构建多层感知机(MLP)神经网络模型对数据集进行训练,并采用敏感性分析得到用于表征集料粒径的重要特征权重,实现对集料粒径的准确计算。结果表明,文中提出的集料粒径计算方法与卡尺法测量的结果拟合精度较高(相关系数R2=0.91),与二阶矩、等效椭圆等传统几何模型方法相比不仅明显提高了精度,而且可以实现快速虚拟筛分,显著提升后续的筛分效率。 展开更多
关键词 集料粒径 多特征因子 几何特征 相关性分析 虚拟筛分 多层感知机神经网络
在线阅读 下载PDF
基于深度学习的小麦籽粒锌含量预测及安全利用分区
5
作者 李清彩 陈娟 +3 位作者 赵庆令 蔡图 韩文撑 褚琳琳 《农业环境科学学报》 CAS CSCD 北大核心 2024年第10期2248-2259,共12页
为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研... 为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研究了小麦籽粒中Zn含量及其根际土壤理化指标含量特征,利用多层感知机神经网络和随机森林模型对小麦籽粒Zn含量变化特征进行预测,选择最优模型预测出济宁南部区域小麦籽粒Zn含量,并结合GIS技术划分了贫锌、缺锌、足锌和富锌农田。结果表明:济宁南部区域小麦籽粒中Zn含量平均值(39.7 mg·kg^(-1))与富锌小麦籽粒推荐值基本持平,超出黄淮麦区小麦籽粒Zn平均含量1.32倍;经相关分析和聚类分析得出,小麦籽粒Zn与根际土壤理化指标之间相互作用、相互耦合,存在着较为复杂的非线性关系;多层感知机神经网络预测模型的R^(2)(0.999)、RMSE(0.194)和MAE(0.146)等评价指标均优于随机森林模型;根际土壤中P、pH、OrgC和N指标是影响多层感知机神经网络预测相对重要的特征变量;研究区以足锌农田和缺锌农田为主,面积占比分别为57.47%和33.97%,谨慎利用贫锌区和安全利用富锌区农田面积占比分别为6.05%和2.51%。通过深度学习与农业地质相结合,利用多层感知机神经网络实现了通过简单土壤理化指标精准预测小麦籽粒锌含量。 展开更多
关键词 深度学习 多层感知机神经网络 随机森林 小麦 安全利用
在线阅读 下载PDF
小样本纱线质量预测的机器学习算法适用性分析
6
作者 刘智玉 李学星 +2 位作者 李立轻 陈南梁 汪军 《棉纺织技术》 CAS 2024年第8期27-34,共8页
为了解决当前基于神经网络的纱线质量预测模型针对小样本预测精度偏低和预测精度不稳定的问题,建立了随机森林(RF)算法预测模型、多层感知机神经网络(MLP)算法预测模型和线性回归(LR)算法预测模型,就各算法模型在小样本情况下对不同数... 为了解决当前基于神经网络的纱线质量预测模型针对小样本预测精度偏低和预测精度不稳定的问题,建立了随机森林(RF)算法预测模型、多层感知机神经网络(MLP)算法预测模型和线性回归(LR)算法预测模型,就各算法模型在小样本情况下对不同数据特点的数据集的敏感性、不同数据维度的敏感性和不同训练样本数的敏感性进行了预测性能对比试验。用决定系数和均方根误差进行模型预测性能评估。试验结果表明:在小样本情况下,相比于MLP算法和LR算法,大多数情况下RF算法预测准确性更高、预测精度稳定性更好、对小训练样本量的适应性更好,具有较高的综合预测性能。 展开更多
关键词 随机森林算法 多层感知机神经网络 线性回归算法 质量预测 小样本 预测模型 决定系数
在线阅读 下载PDF
页岩油压裂井产量预测方法研究
7
作者 赵庆杰 唐宏宝 +3 位作者 张乾 冯凡 郝华松 白石 《油气井测试》 2024年第3期46-52,共7页
为了综合考虑地质因素和工程参数对页岩油压裂井产量的影响,以大港油田页岩油井为数据来源,利用Spearman相关系数和随机森林综合筛选关键特征参数,通过数据清洗、多重填补检测剔除异常值,拓展缺失数据,构建完整的压裂井产量预测数据集... 为了综合考虑地质因素和工程参数对页岩油压裂井产量的影响,以大港油田页岩油井为数据来源,利用Spearman相关系数和随机森林综合筛选关键特征参数,通过数据清洗、多重填补检测剔除异常值,拓展缺失数据,构建完整的压裂井产量预测数据集。基于多层感知机神经网络模型,采用网格搜索法进行基础模型的参数调优,建立了页岩油压裂井产量预测模型,训练数据集的预测平均准确度为92.37%。经大港10口页岩油井的生产数据现场应用,预测产量与实际值的平均误差为7.59%,表明该产量预测模型可综合反应地质因素和工程参数对压裂井产量的影响,使预测结果与实际生产相吻合,预测精度高,满足工程需求。 展开更多
关键词 页岩油 压裂 产量预测模型 多层感知机神经网络 现场试验 大港油田 特征参数
在线阅读 下载PDF
水文时间序列趋势预测挖掘系统研究 被引量:5
8
作者 赵瑜 王志坚 +1 位作者 尹燕敏 杨敏 《计算机工程》 CAS CSCD 北大核心 2003年第2期158-160,共3页
讨论了时间序列趋势预测研究的现状和典型方法,并在时间序列预测中引入神经网络方法。介绍了水文时间序列趋势预测挖掘系统的设计与实现,详细分析了系统采用的时间序列预测的神经网络方法。
关键词 水文时间序列 趋势预测 水文数据库 人工神经网络 数据挖掘系统 函数近似 多层感知机神经网络 径向基函数神经网络
在线阅读 下载PDF
基于双参数自适应优化的无人履带车辆轨迹跟踪控制 被引量:6
9
作者 卢佳兴 刘海鸥 +3 位作者 关海杰 李德润 陈慧岩 刘龙龙 《兵工学报》 EI CAS CSCD 北大核心 2023年第4期960-971,共12页
为解决定参数轨迹跟踪控制器工况适应性差的问题,基于改进粒子群优化(IPSO)、多层感知机(MLP)算法,设计一种双参数自适应优化的无人履带车辆轨迹跟踪控制算法。离线状态下,基于采集的实车数据,以轨迹跟踪的高精度、高稳定性、低时间成... 为解决定参数轨迹跟踪控制器工况适应性差的问题,基于改进粒子群优化(IPSO)、多层感知机(MLP)算法,设计一种双参数自适应优化的无人履带车辆轨迹跟踪控制算法。离线状态下,基于采集的实车数据,以轨迹跟踪的高精度、高稳定性、低时间成本为目标,利用IPSO算法构建了不同运动基元下的最优参数组合数据集,并以运动基元类型和车速等为特征向量,控制时域长度、时间步长为标签,采用学习率自适应优化算法完成MLP神经网络模型的训练。在线状态下,根据规划层下发的轨迹信息和车辆状态反馈信息,由MLP神经网络输出预测的最优控制时域长度和控制时间步长,作为双参数输入到模型预测控制算法中,完成自适应轨迹跟踪控制。基于ROS-VREP的联合仿真和基于双侧独立电驱动履带平台进行实车试验。研究结果表明,在包含大曲率转向的综合工况下,与相同计算时间成本的定参数轨迹跟踪控制算法相比,所设计的轨迹跟踪控制器横向偏差均值、航向偏差均值以及转角变化率均值分别降低了30.5%、17.2%、7.8%,证明了算法的可行性和有效性。 展开更多
关键词 履带车辆 轨迹跟踪控制 改进粒子群优化算法 多层感知机神经网络
在线阅读 下载PDF
CO_(2)气体保护焊的焊缝形貌建模及虚拟化仿真系统开发 被引量:1
10
作者 肖罡 欧敏 +3 位作者 李时春 万可谦 周妃四 杨钦文 《机械工程材料》 CAS CSCD 北大核心 2023年第11期67-73,共7页
建立了CO_(2)气体保护焊工艺参数与焊缝几何尺寸(熔宽、熔深)之间的多层感知机神经网络预测模型,并基于焊接试验数据训练模型,确定了模型的数学解析式;通过分析焊缝截面和表面形貌特征,建立焊缝形貌的虚拟化仿真模型;通过python编程开... 建立了CO_(2)气体保护焊工艺参数与焊缝几何尺寸(熔宽、熔深)之间的多层感知机神经网络预测模型,并基于焊接试验数据训练模型,确定了模型的数学解析式;通过分析焊缝截面和表面形貌特征,建立焊缝形貌的虚拟化仿真模型;通过python编程开发了焊缝形貌预测与虚拟化仿真系统。结果表明:所建立的多层感知机神经网络预测模型对熔宽预测的最大偏差为0.097 mm,模型拟合优度为0.999269,对熔深预测的最大偏差为0.051 mm,模型拟合优度为0.999567;建立了以焊缝熔深和熔宽为输入变量的焊缝截面形貌数学模型和以焊缝熔宽为输入变量的表面形貌数学模型。 展开更多
关键词 CO_(2)气体保护焊 多层感知机神经网络模型 焊缝形貌建模 虚拟化仿真系统
在线阅读 下载PDF
基于2D-LDA的车牌字符识别
11
作者 周洪毅 《数字技术与应用》 2016年第6期97-99,共3页
传统的基于LDA的字符识别需要将图像向量化,这会造成协方差矩阵维数过大和奇异问题,而基于2D-LDA的识别算法能够克服上述传统算法的缺陷。首先介绍了2D-LDA算法的原理;然后,在车牌字符数据集上测试了算法的识别率;最后,与多层感知机神... 传统的基于LDA的字符识别需要将图像向量化,这会造成协方差矩阵维数过大和奇异问题,而基于2D-LDA的识别算法能够克服上述传统算法的缺陷。首先介绍了2D-LDA算法的原理;然后,在车牌字符数据集上测试了算法的识别率;最后,与多层感知机神经网络做了对比,表明2D-LDA算法有较高的识别率。 展开更多
关键词 字符识别 2D-PCA 2D-LDA 多层感知机神经网络
在线阅读 下载PDF
基于特征性脂肪酸和甘油三酯指标的油茶籽油掺伪定性鉴别模型对比分析 被引量:2
12
作者 孙婷婷 刘剑波 +2 位作者 任佳丽 钟海雁 周波 《中国油脂》 CAS CSCD 北大核心 2023年第1期66-73,共8页
为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比... 为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定性鉴别的平均精确率均达到0.98,准确率分别达到0.97和0.98。相比于决策树模型,MLP-ANN模型能很好地实现油茶籽油掺伪定性鉴别。 展开更多
关键词 油茶籽油 决策树模型 多层感知机人工神经网络模型 定性鉴别 脂肪酸 甘油三酯
在线阅读 下载PDF
基于跨时间尺度迁移学习的污水处理模型漂移校正方法
13
作者 申渝 廖万山 +6 位作者 李慧敏 冯东 郭智威 张冰 高旭 王建辉 陈猷鹏 《环境科学》 北大核心 2025年第1期318-326,共9页
数据是智能运维的核心基础,但当前污水厂数据普遍不足,且污水处理系统状态随内外部环境动态演化.污水厂的智能运维面临着建模难度大,及因系统演化而导致的模型漂移问题.针对该问题,选取水温、水质和微生物状态等都有显著差异的夏冬两季... 数据是智能运维的核心基础,但当前污水厂数据普遍不足,且污水处理系统状态随内外部环境动态演化.污水厂的智能运维面临着建模难度大,及因系统演化而导致的模型漂移问题.针对该问题,选取水温、水质和微生物状态等都有显著差异的夏冬两季作为典型对比场景,将机制模型与神经网络结合,建立了基于跨时间尺度迁移学习的污水处理模型漂移校正方法 .首先,针对数据不足问题,建立并校准活性污泥模型(ASM),以夏季工况数据作为输入,模拟计算运行参数和出水数据,生成模拟运行数据集,实现数据增广和质量提升,用于训练多层感知机神经网络(MLP)模型.结果显示,MLP模型对夏季出水COD、氨氮和总磷等的平均模拟准确率在95%以上;然后,针对模型在冬季工况中出现模拟准确率大幅下降等模型漂移问题,将冬季实测数据作为目标域数据集,以MLP模型作为预训练模型进行迁移学习.结果表明,迁移学习后模型性能显著提升,出水COD、氨氮、总氮和总磷的平均模拟准确率分别提高了21.49%、60.79%、58.14%和46.74%.研究提出的跨时间尺度迁移学习方法,能有效解决模型漂移问题,实现模型对污水处理系统动态演化的跟随响应. 展开更多
关键词 多层感知机神经网络(MLP)模型 机制模型 迁移学习 模型漂移 系统适应性 知识迁移
原文传递
The development of a knowledge base in an expert system based on the four-layer perceptron neural network 被引量:1
14
作者 谈理 刘谨 梅丽婷 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第4期552-556,共5页
Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge bas... Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differential function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network. 展开更多
关键词 fault diagnosis expert system the four-layer perceptron neural network machine learning
在线阅读 下载PDF
一种合作编码标志的设计与识别定位 被引量:4
15
作者 刘慧洁 买买提明·艾尼 +2 位作者 古丽巴哈尔·托乎提 亚库普·艾合麦提 张全忠 《激光与光电子学进展》 CSCD 北大核心 2021年第12期183-191,共9页
为了提高近景摄影测量中编码标志点的编码容量和解码准确率,提出一种由定位十字标、起始数字、编码字符组成的合作编码定位对应圆型标志方法。通过高斯滤波对采集的图像进行平滑的预处理,可以消除噪声;利用自适应局部阈值法对目标进行分... 为了提高近景摄影测量中编码标志点的编码容量和解码准确率,提出一种由定位十字标、起始数字、编码字符组成的合作编码定位对应圆型标志方法。通过高斯滤波对采集的图像进行平滑的预处理,可以消除噪声;利用自适应局部阈值法对目标进行分割,可以获取字符区域与十字标区域;使用TensorFlow-MLP(Multilayer Perceptron)神经网络训练好的字符样本库对字符进行分类与识别;对十字标区域进行填充修复,经过灰度平方加权质心法可以实现亚像素定位。该类型合作编码标志在实际应用中具有唯一辨识性,定位精度高且解码准确高效。 展开更多
关键词 图像处理 摄影测量 合作编码标志 多层感知机神经网络 灰度加权质心法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部