Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seri...Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.展开更多
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of...Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61372092the China National Science and Technology Major Projects on New Generation Broadband Wireless Mobile Communications Network under Grants No.2011ZX03005-004,No.2012ZX03001029-003,No.2012ZX03001008-003
文摘Femtocell is a promising technology for improving indoor coverage and offloading the macrocell.Femtocells tend to be densely deployed in populated areas such as the dormitories.However,the inter-tier interference seriously exists in the co-channel Densely Deployed Femtocell Network(DDFN).Since the Femtocell Access Points(FAPs) are randomly deployed by their customers,the interference cannot be predicted in advance.Meanwhile,new characteristics such as the short radius of femtocell and the small number of users lead to the inefficiency of the traditional frequency reuse algorithms such as Fractional Frequency Reuse(FFR).Aiming for the downlink interference coordination in the DDFN,in this paper,we propose a User-oriented Graph based Frequency Allocation(UGFA)algorithm.Firstly,we construct the interference graph for users in the network.Secondly,we study the conventional graph based resources allocation algorithm.Then an improved two steps graph based frequency allocation mechanism is proposed.Simulation results show that UGFA has a high frequency reuse ratio mean while guarantees a better throughput.
基金National Natural Science Foundation of China(No.519667013)Institution of Higher Learning Scientific Research Project of Gansu Province of China(No.2016B-032)。
文摘Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery.