Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process par...Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process parameters (e.g. energetic transfer to rock mass, hole deviations, misfires, vibrations, fly-rock, etc.). The approach to this problem searching for the "optimum" result can be ineffective. The geological environment is marked out by too many uncertainties, to have an "optimum" suitable to different applications. Researching for "Robustness" in a blast design gives rise to much more efficiency. Robustness is the capability of the system to behave constantly under varying conditions, without leading to unexpected results. Since the geology varies from site to site, setting a robust method can grant better results in varying environments, lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an innovative approach to systems. C.A. allows analyzing the Complexity of the Blast System and the criticality of each variable (drilling, charging and initiation parameters). The lower is the complexity, the more robust is the system, and the lower is the possibility of unexpected results. The paper presents the results obtained thanks to the C.A. approach in an underground gypsum quarry (Italy), exploited by conventional rooms and pillars method by drilling and blasting. The application of C.A. led to a reliable solution to reduce the charge per delay, hence reducing the impact of ground vibration on the surrounding structures. The analysis of the correlation degree between the variables allowed recognizing empirical laws as well.展开更多
The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical m...The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical model considering contact loss was built in this work, and the vibration performance of the model under random external Gaussian white noise excitation was investigated by using Monte Carlo simulation in Matlab/Simulink. Simulation showed that the spectral content and statistical characters of the contact force coincided strongly with reality. The random vibration character of the contact system was solved using time (numerical) domain simulation in this paper. Conclusions reached here are of great importance for reliability design of switching apparatus.展开更多
文摘Blasting in geological bodies is an industrial process acting in an environment characterized by high uncertainties (natural joints, faults, voids, abrupt structural changes), which are transposed into the process parameters (e.g. energetic transfer to rock mass, hole deviations, misfires, vibrations, fly-rock, etc.). The approach to this problem searching for the "optimum" result can be ineffective. The geological environment is marked out by too many uncertainties, to have an "optimum" suitable to different applications. Researching for "Robustness" in a blast design gives rise to much more efficiency. Robustness is the capability of the system to behave constantly under varying conditions, without leading to unexpected results. Since the geology varies from site to site, setting a robust method can grant better results in varying environments, lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an innovative approach to systems. C.A. allows analyzing the Complexity of the Blast System and the criticality of each variable (drilling, charging and initiation parameters). The lower is the complexity, the more robust is the system, and the lower is the possibility of unexpected results. The paper presents the results obtained thanks to the C.A. approach in an underground gypsum quarry (Italy), exploited by conventional rooms and pillars method by drilling and blasting. The application of C.A. led to a reliable solution to reduce the charge per delay, hence reducing the impact of ground vibration on the surrounding structures. The analysis of the correlation degree between the variables allowed recognizing empirical laws as well.
基金Project (No. FEBQ24409102) supported by the Space Technology Innovation Fund, China
文摘The performance in vibration environment of switching apparatus containing mechanical contact is an important element when judging the apparatus’s reliability. A piecewise linear two-degrees-of-freedom mathematical model considering contact loss was built in this work, and the vibration performance of the model under random external Gaussian white noise excitation was investigated by using Monte Carlo simulation in Matlab/Simulink. Simulation showed that the spectral content and statistical characters of the contact force coincided strongly with reality. The random vibration character of the contact system was solved using time (numerical) domain simulation in this paper. Conclusions reached here are of great importance for reliability design of switching apparatus.