Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of...Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.展开更多
A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was...A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was used for traffic condition recognition based on ten parameters of each driving cycle. The DCR was utilized for optimization of the HEV control parameters using a genetic-fuzzy approach. A fuzzy logic controller (FLC) was designed to be intelligent to manage the engine to work in the vicinity of its optimal condition. The fuzzy membership function parameters were optimized using the genetic algorithm (GA) for each driving cycle. The result is that the DCR_ fuzzy controller can reduce the fuel consumption by 1. 9%, higher than only CYC _ HWFET optimized fuzzy (0.2%) or CYC _ WVUSUB optimized fuzzy (0.7%). The DCR_ fuzzy method can get the better result than only optimizing one cycle on the complex real traffic conditions.展开更多
A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optim...A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optimization design of 2DOF PID regulator.The simulated results show that very good dynamic response performance of both command tracking and disturbance rejection characteristics can be achieved simultaneously.At the same time,the comparisons of simulation results with the improved GA,the basic GEO and the improved GEO were given.From the comparisons,it is shown that the improved GEO algorithm is competitive in performance with the GA and basic GEO and is an attractive tool to be used in the design of two-degree-of-freedom PID regulator.展开更多
With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theor...With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.展开更多
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements...The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.展开更多
基金Project(2016YFC0802904)supported by the National Key Research and Development Program of China
文摘Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.
文摘A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was used for traffic condition recognition based on ten parameters of each driving cycle. The DCR was utilized for optimization of the HEV control parameters using a genetic-fuzzy approach. A fuzzy logic controller (FLC) was designed to be intelligent to manage the engine to work in the vicinity of its optimal condition. The fuzzy membership function parameters were optimized using the genetic algorithm (GA) for each driving cycle. The result is that the DCR_ fuzzy controller can reduce the fuel consumption by 1. 9%, higher than only CYC _ HWFET optimized fuzzy (0.2%) or CYC _ WVUSUB optimized fuzzy (0.7%). The DCR_ fuzzy method can get the better result than only optimizing one cycle on the complex real traffic conditions.
基金The National High Technology Research and Development Program of China(863Program)(No.2003AA517020)
文摘A kind of new design method for two-degree-of-freedom(2DOF)PID regulator was presented,in which,a new global search heuristic--improved generalized extremal optimization(GEO)algorithm is applied to the parameter optimization design of 2DOF PID regulator.The simulated results show that very good dynamic response performance of both command tracking and disturbance rejection characteristics can be achieved simultaneously.At the same time,the comparisons of simulation results with the improved GA,the basic GEO and the improved GEO were given.From the comparisons,it is shown that the improved GEO algorithm is competitive in performance with the GA and basic GEO and is an attractive tool to be used in the design of two-degree-of-freedom PID regulator.
文摘With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.
基金Projects(51408443,51178203)supported by the National Natural Science Foundation of ChinaProject(K201511)supported by the Science Foundation of Wuhan Institute of Technology,China
文摘The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.