Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend P...Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.展开更多
基金National Natural Science Foundation of China(62472397)Innovation Program for Quantum Science and Technology(2021ZD0302902)。
文摘Recently,several PC oracle based side-channel attacks have been proposed against Kyber.However,most of them focus on unprotected implementations and masking is considered as a counter-measure.In this study,we extend PC oracle based side-channel attacks to the second-order scenario and successfully conduct key-recovery attacks on the first-order masked Kyber.Firstly,we analyze the potential joint information leakage.Inspired by the binary PC oracle based attack proposed by Qin et al.at Asiacrypt 2021,we identify the 1-bit leakage scenario in the masked Keccak implementation.Moreover,we modify the ciphertexts construction described by Tanaka et al.at CHES 2023,extending the leakage scenario from 1-bit to 32-bit.With the assistance of TVLA,we validate these leakages through experiments.Secondly,for these two scenarios,we construct a binary PC oracle based on t-test and a multiple-valued PC oracle based on neural networks.Furthermore,we conduct practical side-channel attacks on masked Kyber by utilizing our oracles,with the implementation running on an ARM Cortex-M4 microcontroller.The demonstrated attacks require a minimum of 15788 and 648 traces to fully recover the key of Kyber768 in the 1-bit leakage scenario and the 32-bit leakage scenario,respectively.Our analysis may also be extended to attack other post-quantum schemes that use the same masked hash function.Finally,we apply the shuffling strategy to the first-order masked imple-mentation of the Kyber and perform leakage tests.Experimental results show that the combination strategy of shuffling and masking can effectively resist our proposed attacks.