期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
改进深度残差收缩网络的端到端合成语音检测
1
作者 曾高俊 芦天亮 +2 位作者 任英杰 李御瑾 彭舒凡 《计算机科学与探索》 北大核心 2025年第4期1076-1086,共11页
合成语音的滥用导致了诸多现实问题,研究相应的鉴伪技术对于保护公民人身财产安全、保障社会与国家安全具有重大意义。传统的合成语音检测多采用手工设计特征与后端分类器相结合的方式,前端手工特征设计涉及复杂的先验知识,使用单一手... 合成语音的滥用导致了诸多现实问题,研究相应的鉴伪技术对于保护公民人身财产安全、保障社会与国家安全具有重大意义。传统的合成语音检测多采用手工设计特征与后端分类器相结合的方式,前端手工特征设计涉及复杂的先验知识,使用单一手工特征模型检测效果不理想,而进行多特征融合则导致模型参数量较大。同时,目前多数检测方法还存在跨数据集泛化性差的问题。为解决上述问题,提出了一种基于改进深度残差收缩网络的端到端合成语音检测方法。融合通道注意力机制重新设计自适应阈值学习模块,提高了阈值学习的精度;设计并引入帧注意力机制模块,为不同的帧赋予不同的关注程度,提高了模型的特征选择能力;设计并引入了具有两种超参数的改进小波阈值函数,增强阈值化模块抑制无关特征的能力;设计了一种基于改进深度残差收缩网络端到端合成语音检测网络,输入原始语音即可判别其是否为合成语音。基于ASVspoof2019 LA数据集的对比实验结果显示,所提方法将基线模型的等错误率与最小串联检测成本函数分别降低了85%与84%。基于ASVspoof2015 LA数据集的跨库测试结果验证了所提方法的泛化性能。 展开更多
关键词 合成语音检测 深度残差收缩网络 帧注意力 小波阈值函数
在线阅读 下载PDF
基于多尺度改进深度残差收缩网络的滚动轴承寿命状态识别
2
作者 陈仁祥 张雁峰 +3 位作者 杨黎霞 梁栋 李嘉琳 闫凯波 《振动与冲击》 北大核心 2025年第7期217-224,共8页
针对背景噪声和不同工况下单一尺度模型特征提取能力有限,引起滚动轴承寿命状态识别率下降的问题,提出基于多尺度改进深度残差收缩网络(multi scale-improved deep residual shrinkage network,MS-IDRSN)的滚动轴承寿命状态识别方法。首... 针对背景噪声和不同工况下单一尺度模型特征提取能力有限,引起滚动轴承寿命状态识别率下降的问题,提出基于多尺度改进深度残差收缩网络(multi scale-improved deep residual shrinkage network,MS-IDRSN)的滚动轴承寿命状态识别方法。首先,在深度残差收缩单元中引入改进的阈值函数提升网络的抗噪性能,并减小降噪过程中的寿命状态信息丢失;然后,采用不同卷积核尺寸的深度残差收缩单元构建特征提取器,避免单一尺度感受野引起在不同工况下的特征提取能力下降。最后,利用最大均值差异损失适配源域与目标域特征的特征分布,通过Softmax分类器实现在不同工况的轴承寿命状态识别。在PRONOSTIA数据集和自测轴承数据集上验证了所提方法的可行性和有效性,结果表明所提方法具有较好的抗噪性能和泛化性能,在考虑背景噪声和不同工况条件下相比对比方法的寿命状态识别率提升7.6%~46.5%。 展开更多
关键词 滚动轴承 寿命状态识别 阈值函数 多尺度特征 深度残差收缩网络
在线阅读 下载PDF
基于改进深度残差收缩网络的电缆早期故障识别
3
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(ICEEMDAN) 复合多尺度排列熵 改进深度残差收缩网络 故障识别
在线阅读 下载PDF
基于改进深度残差收缩网络的光伏发电阵列故障诊断方法
4
作者 彭辉 黄婧柠 +2 位作者 郑宇锋 田程程 严路 《海军工程大学学报》 CAS 北大核心 2024年第6期1-8,共8页
光伏发电存在诸如出力随机性强,受气象和环境因素影响大,易受接线方式和光伏电池组件内部健康状态等影响的问题。针对上述问题,将光伏阵列输出电压及各支路输出电流波形图像作为故障诊断模型的输入,并对深度学习典型算法中的卷积神经网... 光伏发电存在诸如出力随机性强,受气象和环境因素影响大,易受接线方式和光伏电池组件内部健康状态等影响的问题。针对上述问题,将光伏阵列输出电压及各支路输出电流波形图像作为故障诊断模型的输入,并对深度学习典型算法中的卷积神经网络和深度残差网络进行改进,以适用于二维图像类型辨识且特征提取性能更佳的深度残差收缩网络作为光伏阵列故障诊断算法,在Matlab/Simulink中建立并网光伏发电系统仿真模型,并搭建了与之相对应的试验平台,分别测量正常运行及各类故障下的光伏阵列输出电压以及各支路输出电流,并绘制相应波形特征图作为深度残差收缩网络算法的输入样本,实现并网光伏阵列的故障分类辨识。数值仿真与试验验证了深度残差收缩网络模型的正确性与优越性,对比分析结果表明:该算法在并网光伏阵列故障诊断仿真中的准确率显著高于卷积神经网络和残差网络算法,具有更佳的训练效果和分类性能。 展开更多
关键词 深度残差收缩网络 故障诊断 并网光伏发电系统 波形特征图
在线阅读 下载PDF
基于改进深度残差收缩网络的电力系统暂态稳定评估 被引量:37
5
作者 卢锦玲 郭鲁豫 《电工技术学报》 EI CSCD 北大核心 2021年第11期2233-2244,共12页
针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差... 针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差收缩网络(IDRSN)的电力系统暂态稳定评估方法。首先将底层量测电气量构建成特征图形式作为模型输入,利用模型深层结构建立输入与稳定结果之间的映射关系。面对噪声问题,模型通过注意力机制,采用软阈值函数自动学习噪声阈值,减小噪声及无关特征干扰;并通过焦点损失函数(FL),引入权重系数修正模型训练的倾向性,利用调制因子重点关注误分类样本,提高模型训练效率和评估性能。通过新英格兰10机39节点系统进行仿真分析,所提模型能够有效减小不同程度的噪声干扰,在不平衡数据集上修正模型训练偏向性,以减少误分类样本,在不同PMU配置方案下,均取得较好评估效果。 展开更多
关键词 电力系统 暂态稳定评估 深度学习 深度残差收缩网络 焦点损失函数
在线阅读 下载PDF
基于改进深度残差收缩网络的旋转机械故障诊断 被引量:2
6
作者 杨正理 吴馥云 陈海霞 《机电工程》 CAS 北大核心 2023年第3期344-352,共9页
旋转机械振动信号在多层深度学习过程中会出现退化和过拟合现象,同时含噪数据样本也会使模型故障诊断正确率偏低,数据样本不平衡会引起模型训练具有倾向性,针对以上一系列问题,提出了一种基于改进型深度残差收缩网络(DRSN)的旋转机械故... 旋转机械振动信号在多层深度学习过程中会出现退化和过拟合现象,同时含噪数据样本也会使模型故障诊断正确率偏低,数据样本不平衡会引起模型训练具有倾向性,针对以上一系列问题,提出了一种基于改进型深度残差收缩网络(DRSN)的旋转机械故障诊断方法。首先,对多故障、长时间序列数据样本进行了矩阵化处理,得到了模型容易接受的多维度灰度图故障样本;针对旋转机械从正常状态到故障状态的机械老化过程,采用了多点随机采样方法,构建了全寿命周期数据样本,用于后续的故障诊断;然后,在卷积神经网络(CNN)的基础上,通过引入残差项、注意力机制和焦点损失函数,构建起了多层深度残差收缩网络,对旋转机械进行了故障诊断(其中,残差项降低了训练过程中样本数据的特征损失,避免了模型的退化和过拟合;注意力机制和软阈值化自动设置噪声阈值,降低了噪声对故障诊断精度的影响;焦点损失函数修正了模型训练的倾向性,提高了模型训练效率和灵敏性);最后,利用滚动轴承数据库样本对模型的性能进行了实例验证。研究结果表明:DRSN模型在训练过程中没有出现明显的退化现象,能够始终保持较高的训练效率和故障诊断精度,有效避免了噪声干扰,在不平衡数据集上修正了模型训练的倾向性。与其他模型相比较,DRSN多层模型的平均故障诊断精度提高约1%~6%。 展开更多
关键词 滚动轴承 卷积神经网络 深度残差收缩网络 软阈值化 数据样本不平衡 噪声干扰
在线阅读 下载PDF
基于改进深度残差收缩网络的轴承故障诊断 被引量:3
7
作者 李雪松 李劲华 吕智涵 《青岛大学学报(自然科学版)》 CAS 2022年第2期38-43,50,共7页
为解决噪声背景中轴承故障诊断精度不高的问题,提出了一种新的轴承故障诊断方法。利用连续小波变换将采集到的振动信号转换成小波时频图,采用多尺度膨胀卷积对深度残差收缩网络进行改进,扩大卷积核的感受野,并将交叉熵损失函数改进成加... 为解决噪声背景中轴承故障诊断精度不高的问题,提出了一种新的轴承故障诊断方法。利用连续小波变换将采集到的振动信号转换成小波时频图,采用多尺度膨胀卷积对深度残差收缩网络进行改进,扩大卷积核的感受野,并将交叉熵损失函数改进成加权交叉熵损失函数。实验结果表明,与其他深度学习算法相比,本算法故障诊断的准确率较高。 展开更多
关键词 轴承 故障诊断 深度残差收缩网络 小波时频图 多尺度膨胀卷积
在线阅读 下载PDF
一种基于改进深度残差收缩网络的恶意应用检测方法
8
作者 许历隆 翟江涛 +1 位作者 林鹏 崔永富 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第3期368-378,共11页
恶意应用的快速增长给移动智能终端带来了巨大的安全威胁,实现恶意应用高精度检测对移动网络信息安全具有重要意义.本文提出一种基于改进深度残差收缩网络的恶意应用检测方法.首先将流量特征预处理成卷积神经网络输入,接着引入通道注意... 恶意应用的快速增长给移动智能终端带来了巨大的安全威胁,实现恶意应用高精度检测对移动网络信息安全具有重要意义.本文提出一种基于改进深度残差收缩网络的恶意应用检测方法.首先将流量特征预处理成卷积神经网络输入,接着引入通道注意力机制和空间注意力机制,从通道和空间两个维度对样本特征进行加权.然后再引入深度残差收缩网络,自适应滤除样本冗余特征并通过恒等连接优化参数反向传播,减小模型训练和分类的难度,最终实现安卓恶意应用高精度识别.所提方法可避免手工提取特征,能实现高精度分类并且具有一定泛化能力.实验结果表明,所提方法在恶意应用的2分类、4分类和42分类中准确率分别为99.40%、99.95%和97.33%,与现有方法相比,具有较高的分类性能与泛化能力. 展开更多
关键词 恶意应用 恶意家族 深度残差收缩网络 信息安全
在线阅读 下载PDF
基于改进深度残差收缩网络的心电信号分类算法
9
作者 龚玉晓 高淑萍 《应用数学和力学》 CSCD 北大核心 2023年第8期977-988,共12页
心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过... 心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过采样技术(SMOTE)扩充数量少的类别样本,从而解决了类不平衡问题;其次,利用改进深度残差收缩网络提取空间特征,其残差模块可以避免网络层加深造成的过拟合,压缩激励和软阈值化子网络可以提取重要局部特征并自动去除噪声;然后,通过长短期记忆网络(LSTM)提取时间特征;最后,利用全连接网络输出分类结果.在MIT-BIH心律失常数据集上的实验结果表明,该算法的分类性能优于IDRSN、DRSN、GAN+2DCNN、CNN+LSTM_ATTENTION、SE-CNN-LSTM分类算法. 展开更多
关键词 心电信号 合成少数类过采样技术 深度残差收缩网络 压缩激励 长短期记忆网络
在线阅读 下载PDF
基于深度残差收缩网络的地铁车辆转向架轴承故障诊断
10
作者 刘杨远 沈龙江 +2 位作者 贺世忠 张建全 谢加辉 《电力机车与城轨车辆》 2025年第2期40-46,共7页
文章以地铁车辆转向架故障试验台数据集为基础,通过建立基于深度残差收缩网络(DRSN)的转向架轴承故障诊断模型,实现对电机轴承、齿轮箱轴承和轴箱轴承的故障诊断和状态识别。针对不同载荷和速度的多工况轴承故障数据,DRSN-18模型对轴承... 文章以地铁车辆转向架故障试验台数据集为基础,通过建立基于深度残差收缩网络(DRSN)的转向架轴承故障诊断模型,实现对电机轴承、齿轮箱轴承和轴箱轴承的故障诊断和状态识别。针对不同载荷和速度的多工况轴承故障数据,DRSN-18模型对轴承运行状态识别的平均准确率为99.77%,具有较高的诊断精度和鲁棒性;相比残差网络(ResNet-18)、改进一维卷积神经网络(1DCNN)、深度置信网络(DBN)等模型,DRSN-18模型的平均准确率分别提高了35.39%、62.23%和73.00%。 展开更多
关键词 轴承 深度残差收缩网络(DRSN) 故障诊断 准确率
在线阅读 下载PDF
基于改进深度残差收缩网络的分布式光纤声传感信号识别 被引量:2
11
作者 梁惠康 谢浩燊 +1 位作者 黄红斌 刘伟平 《激光与光电子学进展》 CSCD 北大核心 2024年第5期152-158,共7页
提出了基于新阈值函数的深度残差收缩网络(DRSN-NTF),用于解决分布式光纤声传感(DAS)信号噪声强、识别难的问题。DRSN-NTF基于深度残差收缩网络(DRSN),使用新阈值函数代替软阈值函数,使其更能发挥信号噪声处理和分类识别能力。使用DAS... 提出了基于新阈值函数的深度残差收缩网络(DRSN-NTF),用于解决分布式光纤声传感(DAS)信号噪声强、识别难的问题。DRSN-NTF基于深度残差收缩网络(DRSN),使用新阈值函数代替软阈值函数,使其更能发挥信号噪声处理和分类识别能力。使用DAS系统采集周界入侵事件的实验数据,并通过添加高斯白噪声的形式,设计了6组不同信噪比(0 dB~5 dB)的实验。对比了4个模型的实验结果,由此考察DRSN-NTF的识别效果。结果发现:在强噪声的情况下,DRSN-NTF取得的平均测试准确率比DRSN高1.05%;随着信噪比的降低,DRSN-NTF的测试准确率高于DRSN的差值增大,表明DRSN-NTF在信号噪声处理和分类识别能力方面更强,能获得相对更高的识别准确率。因此,DRSNNTF更加适用于DAS信号识别。 展开更多
关键词 光纤光学 光纤传感器 模式识别 深度残差收缩网络 新阈值函数 周界安防
原文传递
融合HSI的深度残差收缩网络鉴别变造文件字迹油墨研究 被引量:1
12
作者 高树辉 张浩 《中国人民公安大学学报(自然科学版)》 2024年第1期1-7,共7页
经济犯罪和各类民事纠纷等案件中,字迹油墨检验对质疑文书同一认定有重要意义,相关研究一直是法庭科学安全领域的重要课题。鉴于传统方法效率和精度较低,提出一种结合高光谱图像的深度残差收缩网络快速且无损鉴别字迹油墨种类的新方法... 经济犯罪和各类民事纠纷等案件中,字迹油墨检验对质疑文书同一认定有重要意义,相关研究一直是法庭科学安全领域的重要课题。鉴于传统方法效率和精度较低,提出一种结合高光谱图像的深度残差收缩网络快速且无损鉴别字迹油墨种类的新方法。首先,采集了30支不同品牌型号的黑色签字笔油墨的高光谱图像,对每支中性油墨的高光谱图像进行分割,提取笔迹区域进行10×10像素融合,获取了共计13942像素点的反射率数据作为样本集。其次,结合残差网络、软阀值化与注意力机制,提出适用于处理高光谱数据的一维深度残差收缩网络模型,同时将其与卷积神经网络和传统机器学习模型进行比较。实验得出,支持向量机、逻辑回归、随机森林3个模型的像素反射率值测试准确率分别为59.1%、57.8%和51.7%,卷积神经网络为64.2%,损失函数值下降到1.536,而深度残差收缩网络验证识别率最高,达到75.4%,损失函数值最终下降到0.920,达到收敛。实验结果表明,光谱检测方法具有无损、成像快速、操作简单的优点,提出的光谱检测深度残差收缩网络模型在笔迹油墨的分类效果和精度上具有明显优势,可实现黑色签字笔油墨种类高光谱数据的深度挖掘和准确分类,结合笔迹检验技术能为法庭科学中质疑文书检验提供技术支撑。 展开更多
关键词 高光谱图像 深度残差收缩网络 机器学习 字迹油墨 无损鉴别
在线阅读 下载PDF
基于多残差注意力深度收缩网络的超微光图像增强方法
13
作者 刘宁 蔡闻超 +5 位作者 陈颜皓 刘尧振 许吉 章文欣 宋仁轩 祝福 《南京邮电大学学报(自然科学版)》 北大核心 2024年第2期69-82,共14页
超微光成像可在极度黑暗的环境中给观察者提供近乎白昼的视觉体验,在许多民用和军事应用中起着至关重要的作用。超微光环境下拍摄的图像和视频通常存在亮度与对比度极低、噪声水平高、场景细节和色彩严重缺失等固有缺陷,近年来,深度学... 超微光成像可在极度黑暗的环境中给观察者提供近乎白昼的视觉体验,在许多民用和军事应用中起着至关重要的作用。超微光环境下拍摄的图像和视频通常存在亮度与对比度极低、噪声水平高、场景细节和色彩严重缺失等固有缺陷,近年来,深度学习为超微光成像的研究带来了新的机遇。文中采集并提供了一组实用性更强的超微光训练数据集,提出了一种多残差注意力深度收缩网络(Multi Residual Attention Shrinkage Network),以此实现了一种新的超微光成像方法。通过成功研制的小型化样机证实了该方法的工业量产前景。实现了基于通道注意力和空间注意力的残差内注意力机制,以及基于深度软阈值收缩的外注意力机制,不仅可以有效提取并还原极低照度环境下的图像细节信息,恢复场景真实色彩,而且可以有效去除此类环境下由成像设备感光不足带来的巨量噪声。实测效果显示该方法可对极低照度环境进行有效的增强且实时性高。通过与多种业界最新方法比较,文中方法在主观视觉体验以及客观参数两方面均表现更好。 展开更多
关键词 深度学习神经网络 超微光成像 内外注意力 残差注意力 软阈值收缩
在线阅读 下载PDF
基于改进深度残差收缩网络的风电机组滚动轴承故障诊断方法 被引量:13
14
作者 卞文彬 邓艾东 +3 位作者 刘东川 赵敏 刘洋 李晶 《机械工程学报》 EI CAS CSCD 北大核心 2023年第12期202-214,共13页
滚动轴承是风电机组关键部件,其运行工况复杂,故障类型难以准确识别。针对传统深度神经网络在强噪声环境下特征学习能力不足的问题,提出一种基于稠密连接模块的改进深度残差收缩网络(Deep residual shrinkage network based on dense bl... 滚动轴承是风电机组关键部件,其运行工况复杂,故障类型难以准确识别。针对传统深度神经网络在强噪声环境下特征学习能力不足的问题,提出一种基于稠密连接模块的改进深度残差收缩网络(Deep residual shrinkage network based on dense block,DB-DRSN),实现强噪声、不同负载工况下滚动轴承故障的高效诊断。首先,将添加不同等级噪声的振动信号间隔采样并矩阵化,构建二维灰度图作为输入样本。然后,基于Dense block构造稠密连接残差收缩模块层(Residual shrinkage block unit based on dense block,DB-RSBU),利用Bottleneck层替代残差收缩模块中的卷积隐层,并加入Concat连接,达到对浅层和深层特征的充分利用。在每次稠密连接后通过1×1卷积进行降维,利用注意力模块和软阈值对逐通道特征赋不同阈值并降噪。最后,输入样本经过卷积池化层和DB-RSBU层堆叠的网络得到分类结果。试验表明,DB-DRSN模型在CWRU与PU滚动轴承数据集上不同噪声等级下的平均诊断准确率分别达到99.80%和96.44%,相比其他模型有更高的准确率、更快的收敛速度和更强的抗干扰能力。引入稠密连接核心思想对网络结构的改进可为基于数据驱动的风电机组滚动轴承故障诊断方法提供新思路。 展开更多
关键词 滚动轴承 故障诊断 改进深度残差收缩网络 dense block 注意力机制
原文传递
基于并行融合深度残差收缩网络的有源配电网故障诊断 被引量:1
15
作者 冯骥 杨国华 +4 位作者 史磊 潘欢 陆宇翔 张元曦 李祯 《综合智慧能源》 CAS 2024年第6期8-15,共8页
针对含分布式电源的配电网故障呈现方式多样化以及故障诊断易受分布式电源类型、输出功率等非线性因素影响等问题,提出一种基于并行融合深度残差收缩网络(P-FDRSN)的故障诊断模型。首先,构建具有故障识别支路和故障定位支路的并行网络... 针对含分布式电源的配电网故障呈现方式多样化以及故障诊断易受分布式电源类型、输出功率等非线性因素影响等问题,提出一种基于并行融合深度残差收缩网络(P-FDRSN)的故障诊断模型。首先,构建具有故障识别支路和故障定位支路的并行网络结构——P-FDRSN,在残差模块中引入收缩机制,减少网络中噪声或冗余信息的影响,提高网络对噪声的鲁棒性;其次,将故障录波信号波形幅值变化转换为灰度图和时频图,送入深度残差收缩网络进行深度特征提取并在汇聚层中将获取的特征进行融合,以增强故障录波信号的特征学习能力。仿真结果表明:在不同分布式电源类型和不同输出功率下,模型故障定位与识别精度均能保持在98.75%和97.25%以上,即使在噪声干扰的情况下,诊断准确率仍可保持在96.75%以上,模型具有较高的精度和较好的自适应性。 展开更多
关键词 有源配电网 分布式电源 故障诊断 并行网络结构 并行融合深度残差收缩网络
在线阅读 下载PDF
小波变换和深度残差收缩网络在齿轮箱故障诊断中的应用 被引量:1
16
作者 翁敏超 王海瑞 朱贵富 《机械科学与技术》 CSCD 北大核心 2024年第5期790-797,共8页
齿轮的精确故障诊断是确保旋转机械设备稳定可靠运行的有效手段,针对强噪声环境下齿轮箱中齿轮故障分类问题,提出了一种基于连续小波变换和深度残差收缩网络的故障诊断模型。首先,采用小波变换对一维时间序列的振动数据进行时频分析,将... 齿轮的精确故障诊断是确保旋转机械设备稳定可靠运行的有效手段,针对强噪声环境下齿轮箱中齿轮故障分类问题,提出了一种基于连续小波变换和深度残差收缩网络的故障诊断模型。首先,采用小波变换对一维时间序列的振动数据进行时频分析,将其转化为二维时频图作为深度残差收缩网络(DRSN)的输入;其次,在多层卷积神经网络的基础上加入残差结构中的跨层恒等连接解决了梯度消失和爆炸的问题,同时利用自适应阈值子网络实现软阈值化降噪;最后,将故障样本的时频图作为诊断模型的输入进行故障分类。实验结果证明了与其他模型相比,本文采用的故障诊断方法更容易识别故障特征,分类准确率达到了99.15%。 展开更多
关键词 齿轮箱 时频分析 深度残差收缩网络(DRSN) 故障诊断
在线阅读 下载PDF
基于深度残差收缩网络的雷达空中目标识别
17
作者 尹建国 盛文 蒋伟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3012-3018,共7页
雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷... 雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷达空中目标HRRP识别方法。该网络将深度残差网络、软阈值函数和注意力机制结合起来,采用跨层恒等连接方式,不仅可以避免网络层数过深造成梯度消失或梯度爆炸,从而导致网络学习能力下降的问题,还可以有效过滤掉识别过程中噪声特征的影响,使模型专注于目标区域的深度特征识别,提升强噪声背景下模型的识别能力。实验结果表明,相对于其他常用的深度学习模型,所提方法在各个信噪比条件下,识别效果均有一定的优势,该模型对噪声具有较强的鲁棒性。 展开更多
关键词 空中目标识别 高分辨距离像 深度残差收缩网络 噪声鲁棒性
在线阅读 下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别
18
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
在线阅读 下载PDF
基于时序深度残差收缩网络的混叠信号调制识别方法
19
作者 刘京华 魏祥麟 +3 位作者 范建华 胡永扬 王晓波 于兵 《电信科学》 北大核心 2024年第10期27-38,共12页
基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(l... 基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(long short term memory,LSTM)网络和深度残差收缩网络(deep residual shrinkage network,DRSN),设计了时序深度残差收缩网络模型,其中包含残差模块、收缩模块和LSTM模块。残差模块和收缩模块负责提取混叠信号中的显著信息并自适应生成决策阈值,LSTM模块用于提取混叠信号中的时序隐含特征。三者结合可以有效提高混叠信号的识别精度。公开和实测数据集测试结果表明,所提方法识别精度优于5种典型方法,在高信噪比下的平均识别分类准确率可以达到92.7%;21种混叠信号中有12种识别准确率接近100%。 展开更多
关键词 调制识别 混叠信号 深度残差收缩网络 深度学习
在线阅读 下载PDF
深度残差收缩网络在滚动轴承故障诊断中的应用
20
作者 张执锦 李鹤 +1 位作者 黄宇实 王文学 《东北大学学报(自然科学版)》 CSCD 北大核心 2024年第11期1587-1594,共8页
针对滚动轴承故障在强噪声环境下难以进行精准诊断的问题,提出一种基于池化融合的深度残差收缩网络用于滚动轴承故障诊断.首先,通过引入残差连接避免由于网络过深而带来的梯度消失或爆炸的风险;然后,采用多尺度池化特征融合提取振动信... 针对滚动轴承故障在强噪声环境下难以进行精准诊断的问题,提出一种基于池化融合的深度残差收缩网络用于滚动轴承故障诊断.首先,通过引入残差连接避免由于网络过深而带来的梯度消失或爆炸的风险;然后,采用多尺度池化特征融合提取振动信号更丰富的局部特征并通过注意力机制自动推导软阈值函数的最优阈值进行自适应去噪;最后,通过带标签的滚动轴承故障数据对所提网络进行训练,以实现滚动轴承在强噪声环境下的精准故障诊断.实验结果表明,在不同信噪比(signal-to-noise ratio,SNR)的噪声条件下,基于池化融合的深度残差收缩网络与传统的模型相比能实现更高的故障诊断精度. 展开更多
关键词 深度残差收缩网络 池化融合 注意力机制 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部