细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a ...细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a novel channel⁃spatial attention module),分别从通道维和空间维同时提取特征,再将其融入到Swin Transformer模型中以提高其小尺度中多头注意力信息的提取能力.SwinT⁃NCSA算法特别关注了对分类有用的区域,同时忽视对分类无用的背景区域,以此在细粒度图像分类任务中达到较高的分类准确率.在FGVC Aircraft飞机数据集、CUB-200-2011鸟类数据集和Stanford Cars车类数据集3个公共数据集上的实验表明,SwinT⁃NCSA算法可以分别取得93.3%、88.4%和94.7%的准确率,优于同类算法.展开更多
为解决缫丝时绪下茧粒与工作背景辨识度较低、茧粒分布密集以及茧粒之间相互遮挡而漏检的问题,课题组提出了一种基于改进YOLOv5s的缫丝机绪下茧粒数检测算法。该算法在Backbone中引入RFB-SE(receptive field block-squeeze and excitati...为解决缫丝时绪下茧粒与工作背景辨识度较低、茧粒分布密集以及茧粒之间相互遮挡而漏检的问题,课题组提出了一种基于改进YOLOv5s的缫丝机绪下茧粒数检测算法。该算法在Backbone中引入RFB-SE(receptive field block-squeeze and excitation)模块,实现了对与工作背景辨识度较低茧粒的检测;使用空间增强注意力模块(spatially enhanced attention module,SEAM)来改进网络的颈部(Neck),解决了由于茧粒遮挡而造成漏检的问题;引入Soft-NMS代替非极大值抑制(non-max suppression,NMS),改变了原始模型对于预测框的处理方式,更好地改善了漏检问题。实验结果表明:该算法在数据集上召回率达到了98.3%;平均精度均值达到了98.8%,相比原始模型提高了3.3%。该算法解决了茧粒与工作背景辨识度低、茧粒间相互遮挡而造成的漏检问题。展开更多
文摘细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a novel channel⁃spatial attention module),分别从通道维和空间维同时提取特征,再将其融入到Swin Transformer模型中以提高其小尺度中多头注意力信息的提取能力.SwinT⁃NCSA算法特别关注了对分类有用的区域,同时忽视对分类无用的背景区域,以此在细粒度图像分类任务中达到较高的分类准确率.在FGVC Aircraft飞机数据集、CUB-200-2011鸟类数据集和Stanford Cars车类数据集3个公共数据集上的实验表明,SwinT⁃NCSA算法可以分别取得93.3%、88.4%和94.7%的准确率,优于同类算法.
文摘为解决缫丝时绪下茧粒与工作背景辨识度较低、茧粒分布密集以及茧粒之间相互遮挡而漏检的问题,课题组提出了一种基于改进YOLOv5s的缫丝机绪下茧粒数检测算法。该算法在Backbone中引入RFB-SE(receptive field block-squeeze and excitation)模块,实现了对与工作背景辨识度较低茧粒的检测;使用空间增强注意力模块(spatially enhanced attention module,SEAM)来改进网络的颈部(Neck),解决了由于茧粒遮挡而造成漏检的问题;引入Soft-NMS代替非极大值抑制(non-max suppression,NMS),改变了原始模型对于预测框的处理方式,更好地改善了漏检问题。实验结果表明:该算法在数据集上召回率达到了98.3%;平均精度均值达到了98.8%,相比原始模型提高了3.3%。该算法解决了茧粒与工作背景辨识度低、茧粒间相互遮挡而造成的漏检问题。