针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪...针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。展开更多
针对同步定位与地图建立(simultaneous localization and mapping,SLAM)算法在动态环境下存在位姿估计和地图构建误差较大的问题,提出一种光流语义分割方法用于增加动态场景下的可运行性。将ORB-SLAM2系统与YOLOv5模型结合,对传入图像...针对同步定位与地图建立(simultaneous localization and mapping,SLAM)算法在动态环境下存在位姿估计和地图构建误差较大的问题,提出一种光流语义分割方法用于增加动态场景下的可运行性。将ORB-SLAM2系统与YOLOv5模型结合,对传入图像提取特征点的同时将YOLOv5网络模型语义分割后的物体分为高、中、低动态物体。利用运动一致性检测算法,对三种检测物体动态阈值判断,辨别其是否需要剔除特征点,增加ORB-SLAM2算法在动态环境下的运行精度。为加快系统运行速度,用LK光流法加快普通帧与普通帧之间的匹配,其原理为使用LK光流匹配特征点代替ORB特征点匹配,大大的缩小运行时间,同时运行误差变化不大。实验在TUM数据集下测试,平均每一帧提取2000个特征点,在增加LK光流后缩短0.01 s以上,若在900帧数据集下,可缩短9 s.其绝对轨迹误差对比于ORB-SLAM2和DS-SLAM平均提升在95%与30%以上,证明了算法在动态场景下良好的运行精度与鲁棒性。展开更多
文摘针对ORB(oriented FAST and rotated BRIEF)算法中存在匹配精确率低的问题,提出了一种基于LK(Lucas-Kanade)光流改进的ORB图像匹配方法。首先对待处理的图像进行直方图均衡化,然后在Oriented FAST特征点检测的同时用LK光流对其进行跟踪,并将跟踪的特征点进行Rotated BRIEF描述,最后在特征匹配筛选环节利用RANSAC(Random Sampling Consistency)算法进行误匹配的剔除。实验结果表明,改进算法在公开数据集中的平均匹配精度为90.9%,平均特征匹配及误匹配的剔除共耗时为18ms,与原始ORB算法相比,在时间基本一致的前提下,有效的提高了匹配的精度。