研究网络入侵安全问题,网络入侵具有隐蔽性、随机性和突发性等复杂变化特点,传统方法无法描述变化规律,导致入侵检测正确率低。为了提高网络入侵检测效果,针对BP神经网络参数优化问题,提出一种蝙蝠算法优化BP神经网络的权网络入侵检测模...研究网络入侵安全问题,网络入侵具有隐蔽性、随机性和突发性等复杂变化特点,传统方法无法描述变化规律,导致入侵检测正确率低。为了提高网络入侵检测效果,针对BP神经网络参数优化问题,提出一种蝙蝠算法优化BP神经网络的权网络入侵检测模型(BA-BPNN)。首先将BP神经网络参数编码为蝙蝠个体,并以网络入侵检测正确率作为个体适应度函数,然后通过模拟蝙蝠飞行过程找到BP神经网络最优参数,最后根据最优参数建立网络入侵检测模型。在Matlab 2012平台采用KDD CUP 99数据集仿真测试,结果表明,BA-BPNN解决了传统神经网络模型存在的难题,提高网络入侵检测正确率。展开更多
文摘研究网络入侵安全问题,网络入侵具有隐蔽性、随机性和突发性等复杂变化特点,传统方法无法描述变化规律,导致入侵检测正确率低。为了提高网络入侵检测效果,针对BP神经网络参数优化问题,提出一种蝙蝠算法优化BP神经网络的权网络入侵检测模型(BA-BPNN)。首先将BP神经网络参数编码为蝙蝠个体,并以网络入侵检测正确率作为个体适应度函数,然后通过模拟蝙蝠飞行过程找到BP神经网络最优参数,最后根据最优参数建立网络入侵检测模型。在Matlab 2012平台采用KDD CUP 99数据集仿真测试,结果表明,BA-BPNN解决了传统神经网络模型存在的难题,提高网络入侵检测正确率。