为了高效安全地分析网络攻击行为问题,提出基于联邦学习的自适应网络攻击分析方法(adaptive network attack analysis method based on federated learning, NAA-FL),该方法可以在实现隐私保护的同时充分利用数据进行网络攻击分析.首先...为了高效安全地分析网络攻击行为问题,提出基于联邦学习的自适应网络攻击分析方法(adaptive network attack analysis method based on federated learning, NAA-FL),该方法可以在实现隐私保护的同时充分利用数据进行网络攻击分析.首先,提出一种基于DQN的低成本防御机制(动态选择参与方机制),作用在联邦学习模型参数共享、模型聚合过程中,为每一轮模型更新动态选择最佳参与方,减少局部模型在训练过程中表现不佳对全局模型的影响,同时降低通信开销时间,提高联邦学习效率.其次,设计一种自适应特征学习的网络入侵检测模型,能够根据不断变化的攻击特征进行智能学习和分析,以应对复杂的网络环境,有效降低特征选择的时空开销.最后,在公开数据集(NSL KDD)上进行对比实验,NAA-FL方法对攻击的检测准确率为98.9%,动态选择参与方机制提高服务器准确率4.48%,实验结果表明:该方法具有优良的鲁棒性和高效性.展开更多