Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversi...Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversity and dynamic,in particular for software-induced failures,with an impact on the overall dependability.Moreover,it is very different for safety system to operate successfully at any active phase,since there is a huge difference in failure rate between hardware-induced and softwareinduced failures.To handle these difficulties and achieve accurate dependability evaluation,consistently reflecting the construct it measures,a new formalism derived from dynamic fault graphs(DFG) is developed in this paper.DFG exploits the concept of system event as fault state sequences to represent dynamic behaviors,which allows us to execute probabilistic measures at each timestamp when change occurs.The approach automatically combines the reliability analysis with the system dynamics.In this paper,we describe how to use the proposed methodology drives to the overall system dependability analysis through the phases of modeling,structural discovery and probability analysis,which is also discussed using an example of a virtual computing system.展开更多
The inherent complexity and uncertainty of multi-operator multi-robot (MOMR) tele-operation system make its safeguard an essential problem. Hazardous factors in the system are analyzed using fault tree analysis(FTA...The inherent complexity and uncertainty of multi-operator multi-robot (MOMR) tele-operation system make its safeguard an essential problem. Hazardous factors in the system are analyzed using fault tree analysis(FTA) technology, and three-layer interactive safety architecture with information flow is designed in modules to control the factors according to the holistic control mode. After that, distributed virtual environment (DVE) including the characteristics of virtual guide (VG) technology is discussed to help the operators achieve some tasks through the visibility of control commands, time-delay, movement collision and operators' intentions. Finally an experiment is implemented to test the efficiency of safety control architecture by using two robots to place some building blocks in the same workspace.展开更多
An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or p...An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.展开更多
Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mo...Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mobilizers, to reduce the loss of emergency incidents and casualties.展开更多
In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.T...In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.展开更多
基金This work was supported in part by National Natural Science Foundation of China under grant No.61272411 and National 973 Basic Research Program of China under grant No.2014CB340600
文摘Dependability analysis is an important step in designing and analyzing safety computer systems and protection systems.Introducing multi-processor and virtual machine increases the system faults' complexity,diversity and dynamic,in particular for software-induced failures,with an impact on the overall dependability.Moreover,it is very different for safety system to operate successfully at any active phase,since there is a huge difference in failure rate between hardware-induced and softwareinduced failures.To handle these difficulties and achieve accurate dependability evaluation,consistently reflecting the construct it measures,a new formalism derived from dynamic fault graphs(DFG) is developed in this paper.DFG exploits the concept of system event as fault state sequences to represent dynamic behaviors,which allows us to execute probabilistic measures at each timestamp when change occurs.The approach automatically combines the reliability analysis with the system dynamics.In this paper,we describe how to use the proposed methodology drives to the overall system dependability analysis through the phases of modeling,structural discovery and probability analysis,which is also discussed using an example of a virtual computing system.
文摘The inherent complexity and uncertainty of multi-operator multi-robot (MOMR) tele-operation system make its safeguard an essential problem. Hazardous factors in the system are analyzed using fault tree analysis(FTA) technology, and three-layer interactive safety architecture with information flow is designed in modules to control the factors according to the holistic control mode. After that, distributed virtual environment (DVE) including the characteristics of virtual guide (VG) technology is discussed to help the operators achieve some tasks through the visibility of control commands, time-delay, movement collision and operators' intentions. Finally an experiment is implemented to test the efficiency of safety control architecture by using two robots to place some building blocks in the same workspace.
文摘An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.
文摘Mobile block system is a new type of block technology based on the theory of interval block. This article focuses on the analysis of safety key points, the efficient use of emergency time, the maximum efficiency of mobilizers, to reduce the loss of emergency incidents and casualties.
基金supported by the National Natural Science Foundation of China(Grant Nos.61402407 and 11375152)
文摘In this paper,two fault tolerant channel-encrypting quantum dialogue(QD)protocols against collective noise are presented.One is against collective-dephasing noise,while the other is against collective-rotation noise.The decoherent-free states,each of which is composed of two physical qubits,act as traveling states combating collective noise.Einstein-Podolsky-Rosen pairs,which play the role of private quantum key,are securely shared between two participants over a collective-noise channel in advance.Through encryption and decryption with private quantum key,the initial state of each traveling two-photon logical qubit is privately shared between two participants.Due to quantum encryption sharing of the initial state of each traveling logical qubit,the issue of information leakage is overcome.The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen,making quantum resource economized.As a result,their information-theoretical efficiency is nearly up to 66.7%.The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements.Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered.Furthermore,the proposed QD protocols can be implemented with current techniques in experiment.