现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问...现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问题,提出一种面向多模态数据的智能高效索引选择模型APE-X DQN(Distributed prioritized experience replay in deep Q-network),称为AP-IS(APE-X DQN for index selection).AP-IS设计了新型索引集编码和SQL语句编码方法,该方法使AP-IS在感知多模态数据的同时兼顾索引结构本身的特性,极大地降低了索引的存储代价.APIS集成新型索引效益评估方法,在优化强化学习奖励机制的同时,监控数据库工作负载的执行状态,保证动态工作负载下AP-IS在时间和空间上的优化效果.在真实多模态数据集上进行大量实验,验证了AP-IS在工作负载的延迟、存储代价和训练效率等方面的性能,结果均明显优于最新索引选择方法.展开更多
影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与...影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与昂贵的标注成本,构建能够利用多模态数据的无监督学习方法十分必要。为了满足上述需求,提出了一种基于影像与基因多模态表格数据对比学习的表征学习方法(multimodal tabular data with contrastive learning,MTCL),该模型利用了静息态功能磁共振成像(rs-fMRI)和单核苷酸多态性(single nucleotide polymorphisms,SNP)数据,无需数据的任何标签信息。为了增强可解释性,模型先通过特征提取模块将rs-fMRI和SNP数据转换为表格类型结构,再通过多模态表格数据对比学习模块对多模态数据进行融合,并获得融合后的数据表征。在重度抑郁症(major depression disorder,MDD)数据上,文中提出的方法能够有效提升MDD诊断性能。此外,MTCL方法结合了模型归因方法挖掘与MDD相关的影像和遗传生物标记物,提高了模型的可解释性,有助于研究人员对疾病发病机制的理解。展开更多
文摘现有的索引选择方法存在诸多局限性.首先,大多数方法考虑场景较为单一,不能针对特定数据模态选择合适的索引结构,进而无法有效应对海量多模态数据;其次,现有方法未考虑索引选择时索引构建的代价,无法有效应对动态的工作负载.针对上述问题,提出一种面向多模态数据的智能高效索引选择模型APE-X DQN(Distributed prioritized experience replay in deep Q-network),称为AP-IS(APE-X DQN for index selection).AP-IS设计了新型索引集编码和SQL语句编码方法,该方法使AP-IS在感知多模态数据的同时兼顾索引结构本身的特性,极大地降低了索引的存储代价.APIS集成新型索引效益评估方法,在优化强化学习奖励机制的同时,监控数据库工作负载的执行状态,保证动态工作负载下AP-IS在时间和空间上的优化效果.在真实多模态数据集上进行大量实验,验证了AP-IS在工作负载的延迟、存储代价和训练效率等方面的性能,结果均明显优于最新索引选择方法.
文摘影像基因组学认为神经影像与基因之间存在着一定程度的相关性,利用遗传变异与影像数据进行疾病分析愈发受研究人员重视。在实践中,临床医生拥有的数据规模往往较小,但仍然希望使用深度学习来解决现实问题。考虑到不断扩大的数据规模与昂贵的标注成本,构建能够利用多模态数据的无监督学习方法十分必要。为了满足上述需求,提出了一种基于影像与基因多模态表格数据对比学习的表征学习方法(multimodal tabular data with contrastive learning,MTCL),该模型利用了静息态功能磁共振成像(rs-fMRI)和单核苷酸多态性(single nucleotide polymorphisms,SNP)数据,无需数据的任何标签信息。为了增强可解释性,模型先通过特征提取模块将rs-fMRI和SNP数据转换为表格类型结构,再通过多模态表格数据对比学习模块对多模态数据进行融合,并获得融合后的数据表征。在重度抑郁症(major depression disorder,MDD)数据上,文中提出的方法能够有效提升MDD诊断性能。此外,MTCL方法结合了模型归因方法挖掘与MDD相关的影像和遗传生物标记物,提高了模型的可解释性,有助于研究人员对疾病发病机制的理解。