A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, ...A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.展开更多
Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture u...Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture under walking scenery.Due to person's movements,WBAN is a dynamic network,which means that traditional static protocols are no more suitable for it.For solving this problem,firstly,the feature of human walking at a constant speed is analyzed and we divide a spell of movements into a sequence of key frames just like a video constituted by numbers of continuous frames.As a result,the dynamic walking process is translated into several static postures,which the static MAC protocol could be used for.Secondly,concerning the performance of network lifetime,we design a posture-aware approach for lifetime maximization(PA-DPLM).With analytical and simulation results provided,we demonstrate that PA-DPLM protocol is energy-efficient and can be used under constant speed walking scenery.展开更多
文摘A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Energy efficiency has become one of the most important issues in wireless body area network(WBAN).In this paper,an energy-efficient medium access control(MAC)protocol for WBAN is proposed based on human body posture under walking scenery.Due to person's movements,WBAN is a dynamic network,which means that traditional static protocols are no more suitable for it.For solving this problem,firstly,the feature of human walking at a constant speed is analyzed and we divide a spell of movements into a sequence of key frames just like a video constituted by numbers of continuous frames.As a result,the dynamic walking process is translated into several static postures,which the static MAC protocol could be used for.Secondly,concerning the performance of network lifetime,we design a posture-aware approach for lifetime maximization(PA-DPLM).With analytical and simulation results provided,we demonstrate that PA-DPLM protocol is energy-efficient and can be used under constant speed walking scenery.