期刊文献+
共找到593篇文章
< 1 2 30 >
每页显示 20 50 100
基于时序Q-learning算法的主网变电站继电保护故障快速定位方法
1
作者 刘昊 曲文韬 +2 位作者 张达 李超 李清泉 《微型电脑应用》 2024年第8期134-137,163,共5页
主网变电站继电保护故障通常是突发性的,不会持续一段时间,暂态性质不明显,快速定位效果受限,基于此,提出基于时序Q-learning算法的故障快速定位方法。在时序Q-learning中,使用不同多项式函数参数表示不同主网变电站继电保护动作,采用... 主网变电站继电保护故障通常是突发性的,不会持续一段时间,暂态性质不明显,快速定位效果受限,基于此,提出基于时序Q-learning算法的故障快速定位方法。在时序Q-learning中,使用不同多项式函数参数表示不同主网变电站继电保护动作,采用贪婪策略选择主网变电站继电保护动作,根据继电保护状态反馈结果更新权重,使用时序Q-learning算法进行参数训练。构建故障暂态网络的节点导纳矩阵,计算支路电压、电流,确定故障关联域。按照拓扑图论方式时序Q-learning算法搭建快速定位拓扑结构,通过分析支路电流与故障电流之间距离,计算故障相关度,完成故障快速定位。由实验结果可知,该方法故障相序与实际一致,可以分析主网变电站继电保护暂态性质,适用于复杂多变的继电保护装置。 展开更多
关键词 时序q-learning算法 继电保护 故障快速定位 故障关联域
在线阅读 下载PDF
基于改进Q-learning算法智能仓储AGV路径规划
2
作者 耿华 冯涛 《现代信息科技》 2025年第2期171-175,共5页
作为智能物流系统中重要运输工具的自动引导车(Automated Guided Vehicle,AGV),AGV路径规划与避障算法是移动机器人领域重要研究热点之一。为了解决现有仓储环境下的AGV在运用Q-learning算法进行路径规划时的前期收敛速度慢且探索利用... 作为智能物流系统中重要运输工具的自动引导车(Automated Guided Vehicle,AGV),AGV路径规划与避障算法是移动机器人领域重要研究热点之一。为了解决现有仓储环境下的AGV在运用Q-learning算法进行路径规划时的前期收敛速度慢且探索利用不平衡的问题,提出一种结合引力势场改进Q-learning的算法,同时对贪婪系数进行动态调整。首先,针对传统的Q-learning算法规划时学习效率低问题,构建从AGV到目标点的引力场,引导AGV始终朝着目标点方向移动,减少算法初期盲目性,加强初始阶段的目标性。然后,解决算法探索利用平衡问题,对贪婪系数进行动态改进。仿真实验表明,探索速率提升的同时,算法稳定性也有一定的提升。 展开更多
关键词 q-learning算法 强化学习 人工势场算法 AGV 路径规划
在线阅读 下载PDF
改进Q-Learning的路径规划算法研究 被引量:3
3
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 q-learning算法 平滑处理 动态避障
在线阅读 下载PDF
基于改进Q-Learning的移动机器人路径规划算法 被引量:1
4
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 q-learning算法 ε-decreasing策略
在线阅读 下载PDF
改进的Q-learning蜂群算法求解置换流水车间调度问题
5
作者 杜利珍 宣自风 +1 位作者 唐家琦 王鑫涛 《组合机床与自动化加工技术》 北大核心 2024年第10期175-180,共6页
针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源... 针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源的更新维度数大小,根据选择的维度数大小对编码进行更新,提高了收敛速度和精度,最后使用不同规模的置换流水车间调度问题的实例来验证所提算法的性能,通过对标准实例的计算与其它算法对比,证明该算法的准确性。 展开更多
关键词 q-learning算法 人工蜂群算法 置换流水车间调度
在线阅读 下载PDF
时序图流上的快速子图近似计数算法
6
作者 王晶晶 王延昊 +2 位作者 姜文君 曾一夫 祝团飞 《计算机研究与发展》 北大核心 2025年第3期709-719,共11页
图数据中包含丰富的时间信息,其拓扑结构随时间动态演变,通常建模为时序图流.时序图流由一组节点和一系列带时间戳的有向边组成,节点、时序边随时间动态增加.其中时序子图是由传统子图模式推广而来,不仅考虑拓扑结构,同时将时序边的顺... 图数据中包含丰富的时间信息,其拓扑结构随时间动态演变,通常建模为时序图流.时序图流由一组节点和一系列带时间戳的有向边组成,节点、时序边随时间动态增加.其中时序子图是由传统子图模式推广而来,不仅考虑拓扑结构,同时将时序边的顺序和持续时间纳入考量.在时序图流中计算时序子图的出现次数是时序图研究中的一个基础问题.然而,传统流式子图计数方法不支持时序匹配,仅适用于不包含时间信息的简单无向图或有向图;并且,现有时序子图计数算法在不断产生新数据的时序图流场景下效率不高.因此,对时序图流上时序子图近似计数问题进行了研究,提出了基于蓄水池采样的流式边采样(streaming edge sampling, SES)算法,并从期望、方差、时间复杂度3个方面对SES算法进行了理论分析.最后,在4个真实数据集上进行了大量实验.实验结果表明,与基线方法相比,SES虽然返回的计数相对误差略大,但计算效率取得了最高3个数量级的大幅提升. 展开更多
关键词 时序子图 子图计数 时序图流 随机采样 算法
在线阅读 下载PDF
基于改进Q-learning算法移动机器人局部路径研究
7
作者 方文凯 廖志高 《计算机与数字工程》 2024年第5期1265-1269,1274,共6页
针对局部路径规划时因无法提前获取环境信息导致移动机器人搜索不到合适的路径,以及在采用马尔可夫决策过程中传统强化学习算法应用于局部路径规划时存在着学习效率低下及收敛速度较慢等问题,提出一种改进的Q-learn-ing(QL)算法。首先... 针对局部路径规划时因无法提前获取环境信息导致移动机器人搜索不到合适的路径,以及在采用马尔可夫决策过程中传统强化学习算法应用于局部路径规划时存在着学习效率低下及收敛速度较慢等问题,提出一种改进的Q-learn-ing(QL)算法。首先设计一种动态自适应贪婪策略,用于平衡移动机器人对环境探索和利用之间的问题;其次根据A*算法思想设计启发式学习评估模型,从而动态调整学习因子并为搜索路径提供导向作用;最后引入三阶贝塞尔曲线规划对路径进行平滑处理。通过Pycharm平台仿真结果表明,使得改进后的QL算法所规划的路径长度、搜索效率及路径平滑性等特性上都优于传统Sarsa算法及QL算法,比传统Sarsa算法迭代次数提高32.3%,搜索时间缩短27.08%,比传统QL算法迭代次数提高27.32%,搜索时间缩短17.28%,路径规划的拐点大幅度减少,局部路径优化效果较为明显。 展开更多
关键词 移动机器人 q-learning算法 局部路径 A^(*)算法 贝塞尔曲线
在线阅读 下载PDF
基于改进狼群算法与时序特征融合的多元化安全生产预警系统设计
8
作者 和洪宽 《微型电脑应用》 2025年第1期313-316,共4页
受到安全生产信息多元化复杂程度较高的影响,现阶段预警系统无法在既定时间指标范围内准确识别安全异常数据,不能对其进行同步预警。在单位时间内降低系统的识别效率与准确率,不利于维持正常生产秩序。为了解决上述问题,从系统硬件与软... 受到安全生产信息多元化复杂程度较高的影响,现阶段预警系统无法在既定时间指标范围内准确识别安全异常数据,不能对其进行同步预警。在单位时间内降低系统的识别效率与准确率,不利于维持正常生产秩序。为了解决上述问题,从系统硬件与软件算法两方面入手,构建全新功能硬件,增设专项处理单元。根据硬件特点及系统预警缺陷,引入改进狼群算法与时序特征融合算法,共同优化安全异常特征数据,实现多元化异常数据的高精度识别。对所提系统的数据调试证明,所提系统能够有效提升对安全异常数据的识别灵敏度及其准确度,确保系统满足实际生成要求。 展开更多
关键词 改进狼群算法 时序特征融合 多元化 预警系统
在线阅读 下载PDF
时序数据库的数据压缩算法综述
9
作者 董秀英 《科技与创新》 2025年第5期96-99,共4页
时序数据库(Time Series Database,TSDB)被广泛应用于各类需要处理和存储大量时间序列数据的领域,如物联网、金融、医疗和工业监控等。由于数据量不断增长,高效率的数据压缩算法对时序数据库的性能和存储效率至关重要。概述了当前主流... 时序数据库(Time Series Database,TSDB)被广泛应用于各类需要处理和存储大量时间序列数据的领域,如物联网、金融、医疗和工业监控等。由于数据量不断增长,高效率的数据压缩算法对时序数据库的性能和存储效率至关重要。概述了当前主流的时序数据库数据压缩算法,包括简单压缩算法、高效压缩算法、先进压缩算法、混合压缩算法和基于机器学习的压缩算法,分析了各种算法的原理、具体实现步骤、优缺点和适用场景的分析,并对未来研究方向进行了深入探讨。 展开更多
关键词 时序数据库 数据压缩算法 压缩率 数据存储
在线阅读 下载PDF
基于多层时序有偏PageRank算法的网络中关键节点数据挖掘
10
作者 吴凯 张琦佳 +1 位作者 常晓润 刘洋 《微型电脑应用》 2025年第2期174-177,共4页
为了挖掘网络节点数据,实现网络关键节点挖掘,提出多层时序有偏PageRank算法的网络中关键节点数据挖掘方法。运用时间层之间与层内节点之间的连接关系描述时序网络,以此为基础,采用节点层间相似性的超邻接矩阵(SSAM)方法构建多层时序网... 为了挖掘网络节点数据,实现网络关键节点挖掘,提出多层时序有偏PageRank算法的网络中关键节点数据挖掘方法。运用时间层之间与层内节点之间的连接关系描述时序网络,以此为基础,采用节点层间相似性的超邻接矩阵(SSAM)方法构建多层时序网络模型。在SSAM多层时序网络模型中,基于有偏随机游走过程计算网络节点的转移概率矩阵,确定游走者下一个跳转的邻近节点,采用PageRank方法计算转移概率矩阵所确定跳转节点的KeyRank值,依据KeyRank值完成多层时序网络中跳转节点的重要度排序,实现多层时序网络中关键节点挖掘。实验结果表明,所提方法能够考虑时间层之间的相似性与差异性,提高关键节点挖掘的准确性。 展开更多
关键词 多层时序网络 有偏PageRank算法 关键节点 数据挖掘 转移概率 KeyRank值
在线阅读 下载PDF
基于时序卷积残差网络和鹈鹕优化算法的新能源电网安全稳定控制方法 被引量:3
11
作者 张建新 邱建 +4 位作者 朱煜昆 朱益华 杨欢欢 徐光虎 涂亮 《可再生能源》 CAS CSCD 北大核心 2024年第6期845-852,共8页
随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利... 随着“双碳”目标的推进,随机波动的新能源接入电网的规模和容量日益提升,严重影响电网的安全稳定运行。针对大干扰故障电压稳定控制问题,文章提出了一种基于时序卷积残差网络和鹈鹕优化算法的新能源电网电压安全稳定控制策略。首先,利用时序卷积信息损失少、感受野宽以及残差网络深层特征提取能力强的优势,构建基于时序卷积残差网络的电压稳定预测模型,映射出敏感节点电压时序特征和电压稳定之间的关系;其次,构建电压稳定控制模型,利用鹈鹕优化算法收敛速度快、搜索能力强的优势求解控制模型,得出最佳切机和切负荷动作措施;最后,进行了仿真验证。验证结果表明,所提方法提高了新能源电网电压安全稳定预测的准确性,通过最佳的电压稳定控制策略提高了电网故障后的安全稳定运行水平。 展开更多
关键词 新能源 大干扰故障 时序卷积残差网络 鹈鹕优化算法 安全稳定控制
在线阅读 下载PDF
基于Q-learning的移动群智感知任务分配算法 被引量:11
12
作者 胡华 张强 +2 位作者 胡海洋 陈洁 李忠金 《计算机集成制造系统》 EI CSCD 北大核心 2018年第7期1774-1783,共10页
移动群智感知环境中的任务分配是工作流研究领域中一个新方向,为解决应用任务在移动智能用户间的合理调度与分配,本文将机器学习中的Q-learning方法引入到工作流任务分配问题中,提出一种针对多目标的强化贪婪迭代方法。该算法从宏观层... 移动群智感知环境中的任务分配是工作流研究领域中一个新方向,为解决应用任务在移动智能用户间的合理调度与分配,本文将机器学习中的Q-learning方法引入到工作流任务分配问题中,提出一种针对多目标的强化贪婪迭代方法。该算法从宏观层面上通过强化学习的每一次探索进行学习优化,微观层面上通过贪心算法为每一次迭代选择局部最优解,增强了算法的性能。对比其他3种算法,所提算法不但能降低时间和能耗开销,而且收敛速度较快,能够提高感知效率,可作为移动群体感知的工作流调度问题走向智能化的一种尝试。 展开更多
关键词 移动群智感知 q-learning方法 任务分配 算法
在线阅读 下载PDF
Q-learning算法及其在囚徒困境问题中的实现 被引量:7
13
作者 张春阳 陈小平 +1 位作者 刘贵全 蔡庆生 《计算机工程与应用》 CSCD 北大核心 2001年第13期121-122,128,共3页
Q-learning是一种优良的强化学习算法。该文首先阐述了Q-learning的基本学习机制,然后以囚徒困境问题为背景,分析、对比T Q-learning算法与TFT算法,验证了 Q-learning算法的优良特性。
关键词 机器学习 强化学习 q-learning算法 囚徒困境问题 人工智能
在线阅读 下载PDF
改进麻雀算法和Q-Learning优化集成学习轨道电路故障诊断 被引量:6
14
作者 徐凯 郑浩 +1 位作者 涂永超 吴仕勋 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第11期4426-4437,共12页
无绝缘轨道电路的故障具有复杂性与随机性,采用单一的模型进行故障诊断,其性能评价指标难以提高。而采用集成学习方式,则存在各基学习器结构、参数设计盲目,集成模型中各基学习器组合权重难以分配的问题。针对以上问题,提出一种改进麻... 无绝缘轨道电路的故障具有复杂性与随机性,采用单一的模型进行故障诊断,其性能评价指标难以提高。而采用集成学习方式,则存在各基学习器结构、参数设计盲目,集成模型中各基学习器组合权重难以分配的问题。针对以上问题,提出一种改进麻雀算法和Q-Learning优化集成学习的轨道电路故障诊断新方法,该方法有机地将集成学习与计算智能和强化学习相结合,充分挖掘轨道电路故障特征,提高性能评价指标。首先,使用卷积神经网络、长短期记忆网络和多层感知器深度学习模型,以及支持向量机和随机森林传统机器学习模型,共同构成集成学习基学习器,解决单一学习模型的不足,不同基学习器的使用保证集成学习的多样性。从自动化机器学习角度出发,采用改进麻雀算法优化该集成学习模型的结构和参数,克服其结构和参数难以确定的问题。在此之上,引入强化学习Q-learning对集成模型中各基学习器组合权重进行优化,智能地确定集成学习各基学习器的组合权重。最后,将集成学习模型的预测结果与真实结果比较后得到误差,再采用BP神经网络对预测结果进行补偿修正,进一步提高轨道电路的故障诊断性能评价指标。仿真结果表明,利用所提方法进一步改善了轨道电路故障诊断的准确度、精确度、召回率和F1值等性能评价指标。 展开更多
关键词 无绝缘轨道电路 故障诊断 集成学习 改进麻雀算法 q-learning 误差修正
在线阅读 下载PDF
改进Q-Learning算法在路径规划中的应用 被引量:19
15
作者 高乐 马天录 +1 位作者 刘凯 张宇轩 《吉林大学学报(信息科学版)》 CAS 2018年第4期439-443,共5页
针对Q-Learning算法在离散状态下存在运行效率低、学习速度慢等问题,提出一种改进的Q-Learning算法。改进后的算法在原有算法基础上增加了一层学习过程,对环境进行了深度学习。在栅格环境下进行仿真实验,并成功地应用在多障碍物环境下... 针对Q-Learning算法在离散状态下存在运行效率低、学习速度慢等问题,提出一种改进的Q-Learning算法。改进后的算法在原有算法基础上增加了一层学习过程,对环境进行了深度学习。在栅格环境下进行仿真实验,并成功地应用在多障碍物环境下移动机器人路径规划,结果证明了算法的可行性。改进Q-Learning算法以更快的速度收敛,学习次数明显减少,效率最大可提高20%。同时,该算法框架对解决同类问题具有较强的通用性。 展开更多
关键词 路径规划 改进q-learning算法 强化学习 栅格法 机器人
在线阅读 下载PDF
基于生成模型的Q-learning二分类算法 被引量:1
16
作者 尚志刚 徐若灏 +2 位作者 乔康加 杨莉芳 李蒙蒙 《计算机应用研究》 CSCD 北大核心 2020年第11期3326-3329,3333,共5页
对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的... 对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的灵活性,同时在求解参数时,采用最小二乘时序差分(TD)算法和半梯度下降法的组合优化方法,加速了参数的收敛速度。设计实验对比了BGQ-learning算法与三种经典分类器以及一种新颖的分类器的分类性能,在UCI数据库七个数据集上的测试结果表明,该算法有着优良的稳定性以及良好的分类精确度。 展开更多
关键词 q-learning 生成模型 二分类 最小二乘时序差分算法 半梯度下降法
在线阅读 下载PDF
基于n步Q-learning算法的风电抽水蓄能联合系统日随机优化调度研究 被引量:5
17
作者 李文武 马浩云 +1 位作者 贺中豪 徐康 《水电能源科学》 北大核心 2022年第1期206-210,共5页
针对Q-learning算法求解风电抽蓄联合系统日随机优化调度中,存在功率偏差大及收敛速度慢的问题,提出基于n步Q-learning算法的风电抽蓄日随机优化调度方法。先将风电出力随机过程视为Markov过程并建立风电抽蓄日随机优化调度模型;其次分... 针对Q-learning算法求解风电抽蓄联合系统日随机优化调度中,存在功率偏差大及收敛速度慢的问题,提出基于n步Q-learning算法的风电抽蓄日随机优化调度方法。先将风电出力随机过程视为Markov过程并建立风电抽蓄日随机优化调度模型;其次分析n步Q-learning算法应用于优化调度模型中的优势;最后按照应用流程求解优化调度模型。算例表明,n步Q-learning算法的优化结果与n步和学习率取值有关,当两个参数取值适中时能得到最优功率偏差结果,在求解该问题上对比n步Q-learning与Q-learning算法,前者能更快收敛且较后者功率偏差降低7.4%、求解时间降低10.4%,验证了n步Q-learning算法的求解优越性。 展开更多
关键词 风蓄随机优化调度 强化学习 q-learning算法 n步自举法
在线阅读 下载PDF
Q-learning算法下的机械臂轨迹规划与避障行为研究 被引量:11
18
作者 郭新兰 《机床与液压》 北大核心 2021年第9期57-61,66,共6页
机械臂运动和避障中存在轨迹偏差,要通过适当控制算法加以纠正确保实际轨迹趋近于理想轨迹。提出基于改进Q-learning算法的轨迹规划与避障方案,分别构建状态向量集合和每种状态下的动作集合,利用BP神经网络算法提高模型的连续逼近能力,... 机械臂运动和避障中存在轨迹偏差,要通过适当控制算法加以纠正确保实际轨迹趋近于理想轨迹。提出基于改进Q-learning算法的轨迹规划与避障方案,分别构建状态向量集合和每种状态下的动作集合,利用BP神经网络算法提高模型的连续逼近能力,并在迭代中不断更新Q函数值;路径规划中按照关节旋转角度及连杆空间移动距离最小原则,实现在合理避障同时轨迹偏差度最低。仿真结果表明:提出的控制算法收敛性速度快,路径规划效果优于传统规划方案,偏移成本最低。 展开更多
关键词 q-learning算法 机械臂 轨迹规划与避障方案 状态向量集合
在线阅读 下载PDF
基于Q-Learning算法的毫微微小区功率控制算法 被引量:2
19
作者 李云 唐英 刘涵霄 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2557-2564,共8页
该文研究macro-femto异构蜂窝网络中移动用户的功率控制问题,首先建立了以最小接收信号信干噪比为约束条件,最大化毫微微小区的总能效为目标的优化模型;然后提出了基于Q-Learning算法的毫微微小区集中式功率控制(PCQL)算法,该算法基于... 该文研究macro-femto异构蜂窝网络中移动用户的功率控制问题,首先建立了以最小接收信号信干噪比为约束条件,最大化毫微微小区的总能效为目标的优化模型;然后提出了基于Q-Learning算法的毫微微小区集中式功率控制(PCQL)算法,该算法基于强化学习,能在没有准确信道状态信息的情况下,实现对小区内所有用户终端的发射功率统一调整。仿真结果表明该算法能实现对用户终端的功率有效控制,提升系统能效。 展开更多
关键词 集中式功率控制 q-learning算法 能效优化
在线阅读 下载PDF
Markov链与Q-Learning算法的超轻度混动汽车模型预测控制 被引量:3
20
作者 尹燕莉 马永娟 +5 位作者 周亚伟 王瑞鑫 詹森 马什鹏 黄学江 张鑫新 《汽车安全与节能学报》 CAS CSCD 北大核心 2021年第4期557-569,共13页
为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消... 为了同时兼顾能量管理策略的全局最优性与运算实时性,本文提出了基于Markov链与Q-Learning算法的超轻度混合动力汽车模型预测控制能量管理策略。采用多步Markov模型预测加速度变化过程,计算得出混合动力汽车未来需求功率;以等效燃油消耗最小与动力电池荷电状态(SOC)局部平衡为目标函数,建立能量管理策略优化模型;采用Q-Learning算法对预测时域内的优化问题进行求解,得到最优转矩分配序列。基于MATLAB/Simulink平台,对于ECE_EUDC+UDDS循环工况进行仿真分析。结果表明:采用Q-Learning求解的控制策略比基于动态规划(DP)求解的控制策略,在保证燃油经济性基本保持一致的前提下,仿真时间缩短了4 s,明显地提高了运行效率,实时性更好。 展开更多
关键词 超轻度混合动力汽车 模型预测控制 Markov链(Markov chain) q-learning算法 多步Markov模型 能量管理
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部