旨在设计一套基于AD8334的宽带高增益光声信号调理电路,并通过FPGA控制增益线性变化来实现时间增益补偿(time gain compensation,TGC),以校正由于光与超声随传播深度改变的衰减而导致畸变的光声信号。实验证明该方案能有效地对高频光声...旨在设计一套基于AD8334的宽带高增益光声信号调理电路,并通过FPGA控制增益线性变化来实现时间增益补偿(time gain compensation,TGC),以校正由于光与超声随传播深度改变的衰减而导致畸变的光声信号。实验证明该方案能有效地对高频光声信号进行放大和动态增益调节,对克服光声信号传播受深度影响的缺陷具有良好的效果。展开更多
针对时间交替并行采样系统(time-interleaved analog-to-digital converter,TIADC)通道间存在直流偏置误差、增益误差和时钟失配误差的问题,提出一种基于自适应的误差联合补偿算法。该算法设计了新的系统时序和基于子通道的误差补偿模型...针对时间交替并行采样系统(time-interleaved analog-to-digital converter,TIADC)通道间存在直流偏置误差、增益误差和时钟失配误差的问题,提出一种基于自适应的误差联合补偿算法。该算法设计了新的系统时序和基于子通道的误差补偿模型,采用多输入的自适应结构,实现对3种误差的联合补偿。理论分析和仿真结果表明,新算法结构简单,运算量小,具有良好的抗噪声性能,同时算法对带通信号有良好的适用性。当ADC量化位数为16时,系统的信纳比能够提升约37 d B,无杂散动态范围能够提升约50 d B。展开更多
文摘旨在设计一套基于AD8334的宽带高增益光声信号调理电路,并通过FPGA控制增益线性变化来实现时间增益补偿(time gain compensation,TGC),以校正由于光与超声随传播深度改变的衰减而导致畸变的光声信号。实验证明该方案能有效地对高频光声信号进行放大和动态增益调节,对克服光声信号传播受深度影响的缺陷具有良好的效果。
文摘针对时间交替并行采样系统(time-interleaved analog-to-digital converter,TIADC)通道间存在直流偏置误差、增益误差和时钟失配误差的问题,提出一种基于自适应的误差联合补偿算法。该算法设计了新的系统时序和基于子通道的误差补偿模型,采用多输入的自适应结构,实现对3种误差的联合补偿。理论分析和仿真结果表明,新算法结构简单,运算量小,具有良好的抗噪声性能,同时算法对带通信号有良好的适用性。当ADC量化位数为16时,系统的信纳比能够提升约37 d B,无杂散动态范围能够提升约50 d B。