研究下面的离散Minimax问题:(P) min maxf_i(x), x∈S 1≤i≤p其中,S={x∈R^n|g_j(x)≤0,j=1,…,l;h_k(x)=0,k=1,…,m},f_i,g_j,h_k都是R^n上的局部Lipschitz函数.在函数光滑的假设下,[1,2]分别以次梯度与方向导数为工具给出了问题(P)...研究下面的离散Minimax问题:(P) min maxf_i(x), x∈S 1≤i≤p其中,S={x∈R^n|g_j(x)≤0,j=1,…,l;h_k(x)=0,k=1,…,m},f_i,g_j,h_k都是R^n上的局部Lipschitz函数.在函数光滑的假设下,[1,2]分别以次梯度与方向导数为工具给出了问题(P)的一些最优性必要条件与充分条件.本文利用广义梯度,在引入Lipschitz函数的广义凸性基础上给出问题(P)的若干Fritz-John与Kuhn-Tucker充分条件。展开更多
文摘研究下面的离散Minimax问题:(P) min maxf_i(x), x∈S 1≤i≤p其中,S={x∈R^n|g_j(x)≤0,j=1,…,l;h_k(x)=0,k=1,…,m},f_i,g_j,h_k都是R^n上的局部Lipschitz函数.在函数光滑的假设下,[1,2]分别以次梯度与方向导数为工具给出了问题(P)的一些最优性必要条件与充分条件.本文利用广义梯度,在引入Lipschitz函数的广义凸性基础上给出问题(P)的若干Fritz-John与Kuhn-Tucker充分条件。