To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. ...To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).展开更多
This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent ...This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent to maximizing its logarithm, so the objective function 'obj.fun' is maximizing log-likelihood function. Monte Carlo method adapted for implementing and designing the experiments of this simulation. This study including a comparison among three versions of PSO algorithm “Constriction coefficient CCPSO, Inertia weight IWPSO, and Fully Informed FIPSO”, the experiments designed by setting different values of model parameters al, bs sample size n, moreover the parameters of PSO algorithms. MSE used as test statistic to measure the efficiency PSO to estimate model. The results show the ability of PSO to estimate ARMA' s parameters, and the minimum values of MSE getting for COPSO.展开更多
Profile likelihood function is introduced to analyze the uncertainty of hydrometeorological extreme inference and the theory of estimating confidence intervals of the key parameters and quantiles of extreme value dist...Profile likelihood function is introduced to analyze the uncertainty of hydrometeorological extreme inference and the theory of estimating confidence intervals of the key parameters and quantiles of extreme value distribution by profile likelihood function is described.GEV(generalized extreme value)distribution and GP(generalized Pareto)distribution are used respectively to fit the annual maximum daily flood discharge sample of the Yichang station in the Yangtze River and the daily rainfall sample in10 big cities including Guangzhou.The parameters of the models are estimated by maximum likelihood method and the fitting results are tested by probability plot,quantile plot,return level plot and density plot.The return levels and confidence intervals of flood and rainstorm in different return periods are calculated by profile likelihood function.The results show that the asymmetry of the profile likelihood function curve increases with the return period,which can reflect the effect of the length of sample series and return periods on confidence interval.As an effective tool for estimating confidence interval of the key parameters and quantiles of extreme value distribution,profile likelihood function can lead to a more accurate result and help to analyze the uncertainty of extreme values of hydrometeorology.展开更多
基金supported by Joint Foundation of and China Academy of Engineering Physical (10676006)
文摘To estimate the spreading sequence of the direct sequence spread spectrum (DSSS) signal, a fast algorithm based on maximum likelihood function is proposed, and the theoretical derivation of the algorithm is provided. By simplifying the objective function of maximum likelihood estimation, the algorithm can realize sequence synchronization and sequence estimation via adaptive iteration and sliding window. Since it avoids the correlation matrix computation, the algorithm significantly reduces the storage requirement and the computation complexity. Simulations show that it is a fast convergent algorithm, and can perform well in low signal to noise ratio (SNR).
文摘This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent to maximizing its logarithm, so the objective function 'obj.fun' is maximizing log-likelihood function. Monte Carlo method adapted for implementing and designing the experiments of this simulation. This study including a comparison among three versions of PSO algorithm “Constriction coefficient CCPSO, Inertia weight IWPSO, and Fully Informed FIPSO”, the experiments designed by setting different values of model parameters al, bs sample size n, moreover the parameters of PSO algorithms. MSE used as test statistic to measure the efficiency PSO to estimate model. The results show the ability of PSO to estimate ARMA' s parameters, and the minimum values of MSE getting for COPSO.
基金supported by the National Basic Research Program of China("973" Program)(Grant Nos.2013CB036406,2010CB951102)the National Natural Science Foundation of China(Grant No.51109224)
文摘Profile likelihood function is introduced to analyze the uncertainty of hydrometeorological extreme inference and the theory of estimating confidence intervals of the key parameters and quantiles of extreme value distribution by profile likelihood function is described.GEV(generalized extreme value)distribution and GP(generalized Pareto)distribution are used respectively to fit the annual maximum daily flood discharge sample of the Yichang station in the Yangtze River and the daily rainfall sample in10 big cities including Guangzhou.The parameters of the models are estimated by maximum likelihood method and the fitting results are tested by probability plot,quantile plot,return level plot and density plot.The return levels and confidence intervals of flood and rainstorm in different return periods are calculated by profile likelihood function.The results show that the asymmetry of the profile likelihood function curve increases with the return period,which can reflect the effect of the length of sample series and return periods on confidence interval.As an effective tool for estimating confidence interval of the key parameters and quantiles of extreme value distribution,profile likelihood function can lead to a more accurate result and help to analyze the uncertainty of extreme values of hydrometeorology.