期刊文献+
共找到2,059篇文章
< 1 2 103 >
每页显示 20 50 100
AE-EM:一种期望最大化Web入侵检测算法
1
作者 尹兆良 黄于欣 余正涛 《计算机工程与应用》 北大核心 2025年第3期315-325,共11页
现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携... 现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携带的负载信息和流量之间的关联语义信息提取不足,异常检测效果有待提升。提出一种无监督算法,名为注意力扩展期望最大化算法(attention expand expectation-maximization algorithm,AE-EM),该算法提取应用层URL中的攻击负载语义,采用Attention机制混合编码网络层流量结构化数据,训练融合多维特征和关联应用层语义的向量作为算法的输入,使用轻量化期望最大化算法估计高斯混合模型的参数,用于网络安全入侵检测的Web入侵检测场景。通过在基线数据集上使用常用的学习算法和消融实验比较,提出的AE-EM算法在Web入侵检测领域准确率和性能上优于传统算法。 展开更多
关键词 入侵检测 Web攻击检测 注意力机制 em算法 AE-em算法
在线阅读 下载PDF
APX-EM算法的带误差加速
2
作者 邓银 唐亚勇 《四川大学学报(自然科学版)》 北大核心 2025年第1期52-56,共5页
因子分析模型在经济学等领域有着广泛的应用.在应用因子分析模型时需要对模型中的参数进行极大似然估计,EM(Expectation Maximization)算法就是其中一种常用的估计算法.为了克服EM算法收敛速度慢的问题,研究者提出了参数扩展EM算法和基... 因子分析模型在经济学等领域有着广泛的应用.在应用因子分析模型时需要对模型中的参数进行极大似然估计,EM(Expectation Maximization)算法就是其中一种常用的估计算法.为了克服EM算法收敛速度慢的问题,研究者提出了参数扩展EM算法和基于线性预处理和非线性共轭梯度的APX-EM(Accelerated Parameter Expanded EM)算法.APX-EM算法是一种混合加速算法,比EM算法的收敛速度快,更稳定.但是,因APX-EM算法本质上只是EM算法的一种修正,其内在的计算误差可能降低算法的稳定性.本文基于强Wolfe条件提出了一种带误差的APX-EM加速算法,给出了算法的全局收敛性.应用于因子分析模型的数值模拟表明,算法拥有与APX-EM算法同样快的收敛速度,但更稳定. 展开更多
关键词 em算法 APX-em算法 因子分析模型 强Wolfe条件
在线阅读 下载PDF
基于高斯混合模型案例的EM算法教学设计
3
作者 杜芳 方晓峰 《创新教育研究》 2025年第1期394-402,共9页
EM (Expectation Maximization)算法是统计学中的核心算法,也是本校近代数理统计课程教学过程中的一个重难点。论文采用案例式、启发式、研讨式教学方法,以基于高斯混合模型(GMM)的轴承退化阶段划分问题为例,引导学生发现隐变量模型极... EM (Expectation Maximization)算法是统计学中的核心算法,也是本校近代数理统计课程教学过程中的一个重难点。论文采用案例式、启发式、研讨式教学方法,以基于高斯混合模型(GMM)的轴承退化阶段划分问题为例,引导学生发现隐变量模型极大似然估计(MLE)存在的困难,设计问题链启发学生探寻参数估计的数值方法,并总结出EM算法的一般过程。基于matlab编程可视化EM算法下的GMM模型参数更新过程,对比MLE目标函数和EM迭代目标函数,分析EM算法的内涵思想并结合图形进行直观展示,并且挖掘其中蕴含的思政元素,在知识传授的同时实现价值塑造。Expectation maximization (EM) algorithm is a core algorithm in statistics and also a key and difficult point in the teaching process of modern mathematical statistics courses in our school. The paper adopts a case-based and heuristic teaching method, taking the Gaussian Mixture Model (GMM) based bearing degradation stage division problem as an example, guiding students to discover the difficulties of maximum likelihood estimation (MLE) in the latent variable model, designing a problem chain to inspire students to explore numerical methods for parameter estimation, and summarizing the general process of EM algorithm. Based on Matlab programming, the parameter update process of GMM based on EM algorithm is visualized. Comparing the MLE objective function and EM iteration objective function, the intrinsic thought of EM algorithm is analyzed and visually displayed with graphics. The ideological and political elements are also explored, so as to achieve value shaping while knowledge transmission. 展开更多
关键词 em算法 高斯混合模型 教学设计
在线阅读 下载PDF
基于Bayesian的期望最大化方法——BEM算法 被引量:4
4
作者 温津伟 罗四维 +1 位作者 赵嘉莉 韩臻 《计算机研究与发展》 EI CSCD 北大核心 2001年第7期821-825,共5页
通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应... 通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应单一模式而失去泛化能力情况的出现 .实验结果表明了该算法的正确性和有效性 .该算法对研究和发展标准 展开更多
关键词 随机神经网络 em算法 Bayesian方法 Wishart-Gaussian分布
在线阅读 下载PDF
基于EM-KF算法的微地震信号去噪方法
5
作者 李学贵 张帅 +2 位作者 吴钧 段含旭 王泽鹏 《吉林大学学报(信息科学版)》 CAS 2024年第2期200-209,共10页
针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximizati... 针对微地震信号能量较弱,噪声较强,使微地震弱信号难以提取问题,提出了一种基于EM-KF(Expectation Maximization Kalman Filter)的微地震信号去噪方法。通过建立一个符合微地震信号规律的状态空间模型,并利用EM(Expectation Maximization)算法获取卡尔曼滤波的参数最优解,结合卡尔曼滤波,可以有效地提升微地震信号的信噪比,同时保留有效信号。通过合成和真实数据实验结果表明,与传统的小波滤波和卡尔曼滤波相比,该方法具有更高的效率和更好的精度。 展开更多
关键词 微地震 em算法 卡尔曼滤波 信噪比
在线阅读 下载PDF
退火期望最大化算法A-EM 被引量:2
6
作者 齐英剑 罗四维 +2 位作者 黄雅平 李爱军 刘蕴辉 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期654-660,共7页
使用EM算法训练随机多层前馈网具有低开销、易于实现和全局收敛的特点,在EM算法的基础上提出了一种训练随机多层前馈网络的新方法AEM.AEM算法利用热力学系统的最大熵原理计算网络中隐变量的条件概率,借鉴退火过程,引入温度参数,减小了... 使用EM算法训练随机多层前馈网具有低开销、易于实现和全局收敛的特点,在EM算法的基础上提出了一种训练随机多层前馈网络的新方法AEM.AEM算法利用热力学系统的最大熵原理计算网络中隐变量的条件概率,借鉴退火过程,引入温度参数,减小了初始参数值对最终结果的影响.该算法既保持了原EM算法的优点,又有利于训练结果收敛到全局极小.从数学角度证明了该算法的收敛性,同时,实验也证明了该算法的正确性和有效性. 展开更多
关键词 随机前馈神经网络 期望最大化算法 最大熵 退火
在线阅读 下载PDF
期望最大(EM)算法及其在混合高斯模型中的应用 被引量:21
7
作者 朱周华 《现代电子技术》 2003年第24期88-90,共3页
将期望最大 (EM)算法应用于混合高斯模型中 ,通过对算法的介绍及其分析 ,得出 EM算法是参数估计的一种有效算法 ,他大大降低了计算复杂度 ,但性能却与最大似然估计相近 ,具有很好的实际应用价值。
关键词 em算法 混合高斯模型 参数估计 应用
在线阅读 下载PDF
双边定时截尾下Pareto分布的参数的极大似然估计的EM算法
8
作者 田霆 刘次华 《电子产品可靠性与环境试验》 2024年第3期52-54,共3页
给出了当寿命分布为Pareto分布时,双边定时截尾寿命试验下形状参数的极大似然估计。由于似然方程形式较复杂,无法得到参数的显式表达式。但可证明此极大似然估计是唯一存在的,并利用EM算法求出了此参数的一种估计。
关键词 PARETO分布 双边定时截尾 极大似然估计 em算法
在线阅读 下载PDF
基于TLF-YOLOv8的堆叠垃圾实例分割算法
9
作者 李利 梁晶 +2 位作者 陈旭东 潘红光 寇发荣 《科学技术与工程》 北大核心 2025年第5期2009-2018,共10页
相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的... 相较于一般场景下的图像实例分割,复杂堆叠场景下的实例分割受到严重遮挡、同类别待测物体堆叠等复杂情况的影响,使得其实例分割具有更大的难度。针对具有复杂堆叠场景下的垃圾实例分割问题,提出了一种融合YOLOv8与双层特征网络策略的实例分割算法。首先,在数据预处理部分进行特征数据分层,并通过双层图卷积网络(graph convolutions network,GCN)实现双分支特征融合,减弱堆叠情况对被遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。同时,为了解决同类待测物体易混淆的问题,融入了软阈值化非极大值抑制算法和新的交并比算法。最后,根据应用场景和数据集的复杂性,优化了主干网络部分的特征提取模块,并在主干网络部分引入了多尺度注意力机制,有效提高了模型的检测性能。实验使用遮挡垃圾分类实例分割数据集,实验结果表明该方法的平均准确率、交并比阈值为0.5时的平均准确率(AP_(50))、交并比为0.5~0.95时的平均准确率(AP_(50~95))等指标较之前的其他方法更优。相较于原YOLOv8算法,检测AP_(50)提高了7.9%,分割AP_(50)提高了5.4%,具有更好的检测和分割效果。 展开更多
关键词 垃圾堆叠 双层特征解耦融合 YOLOv8算法 软阈值化非极大值抑制 动态非单调聚焦机制 期望最大化注意力
在线阅读 下载PDF
利用期望最大化算法的EMCCD噪声分布模型的参数估计 被引量:2
10
作者 邹盼 刘晖 +3 位作者 张闻文 陈钱 顾国华 张连东 《红外与激光工程》 EI CSCD 北大核心 2013年第1期268-272,共5页
讨论了电子倍增CCD(EMCCD)图像的噪声来源及其统计特性,建立了混合泊松-高斯噪声分布模型。针对混合泊松-高斯噪声分布模型的极大似然函数难以求解的问题,对噪声模型进行了适当的初始化设置,利用期望最大化算法对噪声模型进行参数估计,... 讨论了电子倍增CCD(EMCCD)图像的噪声来源及其统计特性,建立了混合泊松-高斯噪声分布模型。针对混合泊松-高斯噪声分布模型的极大似然函数难以求解的问题,对噪声模型进行了适当的初始化设置,利用期望最大化算法对噪声模型进行参数估计,有效实现了噪声参数的极大似然估计。Monte Carlo仿真结果及实验结果表明,期望最大化算法估计性能较好,对混合泊松-高斯分布有较好的拟合效果,能得到较高精度的参数估计值。 展开更多
关键词 emCCD 噪声分布模型 期望最大化算法 参数估计
在线阅读 下载PDF
基于PSO和MLEM混合算法的NDP测量反演算法研究
11
作者 李远辉 杨芮 +4 位作者 张庆贤 肖才锦 陈弘杰 肖鸿飞 程志强 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第5期1152-1159,共8页
中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法... 中子深度剖面(NDP)分析技术是一种无损检测方法,能够同时测量样品中目标核素的浓度与空间信息,已被广泛应用于锂电池、半导体等产业。在NDP分析过程中,由测量能谱反演出目标核素浓度的分布信息是关键步骤。目前NDP测量反演中常用的算法为最大似然期望最大化(MLEM)算法。针对MLEM算法计算结果易陷入局部最优解的情况,本文提出了粒子群(PSO)与MLEM混合(PSO-MLEM)算法,并通过动态加速因子提高了算法的收敛速度与计算精度。应用PSO-MLEM算法、PSO算法、MLEM算法、奇异值分解求解最小二乘(SVDLS)算法对锂电池中^(6)Li的NDP模拟能谱进行反演,并对反演计算结果进行了评价。结果表明:对比PSO算法,PSO-MLEM算法的收敛效率与计算精度明显提升;对比MLEM算法,PSO-MLEM算法的全局寻优能力有效提升了反演精度,避免了局部最优解的影响;对比SVDLS算法,PSO-MLEM算法的反演精度明显提升。 展开更多
关键词 中子深度剖面分析 粒子群算法 最大似然期望最大化算法 锂电池
在线阅读 下载PDF
采用期望最大化算法的半滑舌鳎性逆转性状高效遗传解析
12
作者 宋禹昕 常中宇 +3 位作者 高进 赵云峰 杨润清 蒋丽 《山东农业大学学报(自然科学版)》 北大核心 2024年第4期531-539,共9页
为了解析半滑舌鳎(Cynoglossus semilaevis)性逆转性状的分子遗传作用机制,定位筛选可用于性控育种的分子标记或侯选基因,本研究提出了一种期望最大化算法(Expectation-Maximization algorithm,EM),并基于该算法开展了半滑舌鳎性逆转性... 为了解析半滑舌鳎(Cynoglossus semilaevis)性逆转性状的分子遗传作用机制,定位筛选可用于性控育种的分子标记或侯选基因,本研究提出了一种期望最大化算法(Expectation-Maximization algorithm,EM),并基于该算法开展了半滑舌鳎性逆转性状的全基因组关联分析。EM算法直接使用阈模型中隐含连续正态分布表型的期望作为因变量,用迭代最小二乘代替logit回归法的迭代重加权最小二乘,它具有比logit回归法更直观、更易于编程的优点。本研究采用显著主成分控制群体分层后,使用EM算法与logit回归对对半滑舌鳎数据进行GWAS(Genome-wide Association Study,GWAS)分析。结果显示,EM算法结果无明显的假阳性或假阴性,比logit回归法的检测效力更高。基于EM算法的全基因组关联分析共定位到13个与性逆转性状显著关联的QTN(quantitative trait nucleotide,QTN),其中3个QTN位于W染色体上,10个QTN位于Z染色体上。经过基因注释发现,上述定位获得的QTN位于LOC103396896、MALT1、ADGRD2、FBXl17、DMXl1、SMARCA2、DMRT1、LOC103397760、NEUR13和PDLIM5a基因区段内。当进行检索时发现,这些基因参与了其他物种中涉及性别决定或性腺发育等相关过程。本研究提供了一种基于EM算法的具有高检测效力的全基因组关联分析方法,同时也为半滑舌鳎的性逆转遗传机制解析和性控育种提供有效的理论指导。 展开更多
关键词 全基因组关联分析 半滑舌鳎 性逆转 主成分 期望最大化算法 广义线性模型
在线阅读 下载PDF
基于数据驱动期望场景集序列的微电网鲁棒经济调度算法 被引量:1
13
作者 秦海杰 郑鹏远 +2 位作者 王雅琳 徐晓旭 支运婷 《现代电力》 北大核心 2024年第5期886-895,共10页
针对新能源和负荷功率的不确定性,提出基于数据驱动期望场景集序列的微电网鲁棒经济调度算法。通过聚类方法将大量历史场景数据进行聚类处理,形成聚类场景集序列,基于概率缩减为期望场景集序列。日前计划阶段,以任意场景可行作为约束条... 针对新能源和负荷功率的不确定性,提出基于数据驱动期望场景集序列的微电网鲁棒经济调度算法。通过聚类方法将大量历史场景数据进行聚类处理,形成聚类场景集序列,基于概率缩减为期望场景集序列。日前计划阶段,以任意场景可行作为约束条件,以期望场景所对应的微电网运行成本的概率加权指标作为目标函数,通过列约束生成算法对微电网经济调度问题进行求解。日内调度阶段,利用新能源和负荷的测量数据,基于日前计划调度结果对微电网进行再调度,通过对传统能源发电功率和电网交互功率调整进行惩罚,来追踪日前计划调度结果,优选出微电网设备最优出力,提高微电网经济性。仿真案例验证了该方法的有效性。 展开更多
关键词 微电网 数据驱动 聚类 期望场景 期望场景集 列约束生成算法 鲁棒经济调度
在线阅读 下载PDF
基于改进期望最大化算法的供应链网络边连接规则优化
14
作者 王中钰 钱晓东 《计算机应用》 CSCD 北大核心 2024年第11期3386-3395,共10页
针对供应链网络在演化形成阶段,企业随机连接可能会导致网络稳定性和运作效率降低的问题,提出一种基于期望最大化(EM)算法的供应链网络连接改进算法。首先,将网络节点边的数量作为新参数加入算法,以更准确地确定新节点在供应链网络中拥... 针对供应链网络在演化形成阶段,企业随机连接可能会导致网络稳定性和运作效率降低的问题,提出一种基于期望最大化(EM)算法的供应链网络连接改进算法。首先,将网络节点边的数量作为新参数加入算法,以更准确地确定新节点在供应链网络中拥有的边数;其次,在边数确定的情况下,提出剩余边连接规则,以增强节点的选择性和分化度;最后,在保证新企业节点能平稳运行的前提下,研究不同初始边数对网络演化的影响。仿真实验结果表明,与EM算法相比,所提改进算法仅需要迭代计算80次即可得到稳定的结果,并且在1 000个节点的规模内,得到的连边数量稳定在4附近,与实际供应链网络的演化过程相匹配。由此可见,所提算法对实际供应链网络的拟合效果明显优于EM算法。 展开更多
关键词 供应链网络 复杂网络 期望最大化算法 连接规则 演化规律
在线阅读 下载PDF
带有偏正态误差的众数回归模型最大似然估计的EM算法
15
作者 姜喆 王丹璐 吴刘仓 《高校应用数学学报(A辑)》 北大核心 2024年第2期141-151,共11页
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值... 经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性. 展开更多
关键词 偏正态分布 众数回归模型 均值回归模型 高斯-马尔柯夫假设 em算法
在线阅读 下载PDF
基于高斯混合模型及EM算法的建筑工程数据预警治理方法 被引量:1
16
作者 张静雯 耿天宝 《科学技术创新》 2024年第8期192-195,共4页
结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方... 结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方案,使该顶管工程顺利贯通。建筑工程行业在现代社会中发挥着重要的经济和社会作用,然而,它也伴随着诸多风险和不确定性。为了有效地管理和预测这些风险,本文提出了一种基于高斯混合模型(GMM)和期望最大化(EM)算法的数据预警治理方法。该方法旨在通过对建筑工程数据的建模和分析,提前识别潜在的问题和风险,从而改善工程项目的管理和决策。 展开更多
关键词 GMM高斯混合模型 em算法 数据预警治理 正态分布曲线 后验概率
在线阅读 下载PDF
混合Beta分布GARCH模型的EM算法求解与实证分析
17
作者 石凯 刘洪江 孙峰 《统计与决策》 CSSCI 北大核心 2024年第2期160-164,共5页
GARCH模型在处理时序数据异方差问题中得到广泛应用,然而在面临一些特殊领域的数据,尤其是金融市场领域中具有高峰厚尾、非对称性、有界取值区间等特征的数据时,传统正态分布的基本假设往往与现实严重不一致。针对此类问题,文章提出混合... GARCH模型在处理时序数据异方差问题中得到广泛应用,然而在面临一些特殊领域的数据,尤其是金融市场领域中具有高峰厚尾、非对称性、有界取值区间等特征的数据时,传统正态分布的基本假设往往与现实严重不一致。针对此类问题,文章提出混合Beta分布的GARCH模型,并给出了基于完全数据最大似然函数的EM算法估计模型的参数,以仿真模拟数据和金融市场现实数据为例,进行了实证分析。结果显示,在违背正态分布假设的情形下,混合Beta分布GARCH模型更能有效地提炼波动的一系列非正态性信息,同时也验证了EM算法对模型的参数求解行之有效。 展开更多
关键词 GARCH模型 混合Beta分布 em算法 参数估计
在线阅读 下载PDF
项目无响应情况下MIRT模型潜变量选择的EMS算法
18
作者 刘芙蓉 徐平峰 《长春工业大学学报》 CAS 2024年第6期537-543,共7页
考虑在教育评估和心理测试中,项目无响应情况下潜变量选择的问题。针对缺失数据过程建立一个项目反应理论(IRT)模型,应用期望模型选择(EMS)算法对其进行潜变量选择。模拟显示,此方法参数估计和潜变量选择结果均较为准确。并用其分析201... 考虑在教育评估和心理测试中,项目无响应情况下潜变量选择的问题。针对缺失数据过程建立一个项目反应理论(IRT)模型,应用期望模型选择(EMS)算法对其进行潜变量选择。模拟显示,此方法参数估计和潜变量选择结果均较为准确。并用其分析2018国际学生评估计划(PISA)针对学生进行的问卷调查数据。 展开更多
关键词 MIRT模型 缺失响应 emS算法
在线阅读 下载PDF
提高长尾数据知识图谱补全性能的一种新算法
19
作者 何苗惠 段旭祥 吴至友 《运筹学学报(中英文)》 北大核心 2025年第1期41-54,共14页
知识图谱是众多智能应用中一种重要的语义数据,但其数据的不完备性给实际应用带来了很多困难,因此需要对知识图谱中缺失的语义信息进行补全。知识图谱嵌入是知识图谱补全的重要方法之一,这类方法通常在非长尾数据情况下具有较好的效果,... 知识图谱是众多智能应用中一种重要的语义数据,但其数据的不完备性给实际应用带来了很多困难,因此需要对知识图谱中缺失的语义信息进行补全。知识图谱嵌入是知识图谱补全的重要方法之一,这类方法通常在非长尾数据情况下具有较好的效果,但在长尾数据情况下其效果较差。由于非长尾数据的语义较丰富,为了提升长尾数据情况下知识图谱补全效果,本文将非长尾数据作为监督知识迁移到长尾数据中,提出了一种新的算法——融入期望最大化算法思想的双重嵌入方法,来改进长尾数据的知识图谱补全性能,进而提高其实际应用效果。通过在FB15K数据集中进行链接预测任务的对比实验,实验结果表明本文提出的融入期望最大化算法思想的双重嵌入方法效果较好。 展开更多
关键词 知识图谱补全 知识图谱嵌入 期望最大化算法 双重嵌入方法
在线阅读 下载PDF
EM最优参数求解的概率粗糙集推荐算法 被引量:2
20
作者 王红 张燕平 +1 位作者 钱付兰 陈功平 《计算机科学与探索》 CSCD 北大核心 2016年第2期285-292,共8页
推荐系统根据用户对项目的历史评分实施推荐,评分矩阵的稀疏性导致推荐的先验知识不足,降低推荐准确率。粗糙集理论能够利用不完备知识实施有效推理,从而提出了基于人口统计学的概率粗糙集推荐模型,使用概率粗糙集理论划分等价类,降低... 推荐系统根据用户对项目的历史评分实施推荐,评分矩阵的稀疏性导致推荐的先验知识不足,降低推荐准确率。粗糙集理论能够利用不完备知识实施有效推理,从而提出了基于人口统计学的概率粗糙集推荐模型,使用概率粗糙集理论划分等价类,降低了评分矩阵稀疏性对推荐结果的影响。使用基于最大期望(expectation maximization,EM)思想的参数求解算法求解参数α和β的最优值,将Pawlak粗糙集的边界域分解到正域或负域中,提升推荐效果。实验结果表明,概率粗糙集模型能够有效提高在评分矩阵非常稀疏情况下的推荐准确率,其在Movie Lens数据集上的推荐准确率最高达到71.42%,覆盖率指标最高达到99.18%。 展开更多
关键词 粗糙集 推荐算法 参数求解 最大期望(em)算法
在线阅读 下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部