期刊文献+
共找到4,736篇文章
< 1 2 237 >
每页显示 20 50 100
基于向量加权平均算法优化最小二乘支持向量机的电价短期预测
1
作者 陈晓华 吴杰康 杨国荣 《黑龙江电力》 2025年第1期1-7,共7页
针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模... 针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模型;选取某地区2010年1月1日-15日的电力价格数据进行分析。仿真结果表明:与核极限学习机、长短期记忆神经网络、LSSVM预测模型相比,INFO-LSSVM预测模型的预测效果更好;利用果蝇优化算法优化LSSVM的惩罚因子和核函数参数构建FOA-LSSVM预测模型的预测效果不及INFO-LSSVM预测模型,并且INFO的收敛速度比FOA快。通过与对照预测模型对比表明,INFO-LSSVM预测模型具有更好的预测性能。 展开更多
关键词 向量加权平均算法 最小乘支持向量 电价预测 短期预测 INFO-lssvm预测模型
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
2
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
3
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
4
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
5
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
在线阅读 下载PDF
基于最小二乘支持向量机算法的智能变电站设备故障定位方法
6
作者 裴玉晶 《现代工业经济和信息化》 2024年第12期74-76,共3页
由于现有的定位方法精度低,为此研究基于最小二乘支持向量机算法的智能变电站设备故障定位方法。将各个节点采集到的数据集中起来进行预处理,提取出能够直接反映网络设备故障状态的特征数据。最小二乘支持向量机法对故障进行分类。通过... 由于现有的定位方法精度低,为此研究基于最小二乘支持向量机算法的智能变电站设备故障定位方法。将各个节点采集到的数据集中起来进行预处理,提取出能够直接反映网络设备故障状态的特征数据。最小二乘支持向量机法对故障进行分类。通过故障分类结果,建立非线性映射模型,通过不断调整优化平滑因子,以获得最高的定位准确度,使其在解空间中找到最优解,在多维数据空间中实现故障信息的精确映射,提高故障定位的精度。实验结果表明,在平滑因子为0.5时,得到其精度结果为98.6%,此结果符合预期,达到了较高的准确性。优化故障特征的提取效果,快速准确地定位故障源。 展开更多
关键词 最小二乘 支持向量 变电站 故障定位 设备故障
在线阅读 下载PDF
基于机理模型和模糊加权最小二乘支持向量机(LSSVM)算法的农杆菌发酵过程混合建模与优化 被引量:5
7
作者 邵玉倩 宗原 +1 位作者 刘以安 刘登峰 《食品与发酵工业》 CAS CSCD 北大核心 2019年第7期65-73,共9页
针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和... 针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和混合核函数方法对LSSVM算法进行优化,并用优化后的LSSVM求解农杆菌ATCC31749发酵过程动力学模型,结合鸟群算法对动力学模型参数进行寻优;然后拟合出溶氧体积分数和各参数之间的关联函数模型,并代入到动力学模型,建立起以溶氧浓度作为关键控制变量的发酵动力学模型;最后,用鸟群算法对模型进行寻优,寻找使得发酵产物浓度最大的最优溶氧过程控制策略。实验仿真结果表明,混合模型的预测精度得到提高,产多糖期溶氧体积分数控制为52%时,产物质量浓度最大,为48.85 g/L。该研究所建立的农杆菌发酵过程混合模型及其溶氧优化结果,为发酵工业上进一步通过最佳溶氧控制策略来提高多糖产量提供了方向。 展开更多
关键词 农杆菌发酵 理模型 最小乘支持向量 混合建模 鸟群算法
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
8
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:123
9
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小乘支持向量 多类分类 粒子群优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
基于遗传算法最小二乘支持向量机的耕地变化预测 被引量:49
10
作者 张豪 罗亦泳 +1 位作者 张立亭 陈竹安 《农业工程学报》 EI CAS CSCD 北大核心 2009年第7期226-231,共6页
针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机... 针对耕地变化内部规律与模拟方法进行研究,提出最小二乘支持向量机耕地变化预测方法,有效构建耕地变化与耕地变化影响因子之间复杂的非线性关系模型。利用遗传算法全局寻优功能优化最小二乘支持向量机内部参数,提高最小二乘支持向量机耕地变化预测模型精度。利用该模型对江苏无锡市1987-2000年期间耕地变化进行预测,并与多元回归、GM(1,1)、BP网络、支持向量机(SVM)耕地预测模型和实际调查耕地变化数据进行比较分析。预测精度评价结果证实,该方法耕地预测精度远高于多元回归、GM(1,1),BP网络模型,略高于SVM模型,但算法复杂度和计算效率远优于SVM预测模型,是一种有效的耕地变化预测方法。 展开更多
关键词 最小乘支持向量 遗传算法 耕地预测 影响因子 精度分析
在线阅读 下载PDF
采用遗传算法优化最小二乘支持向量机参数的方法 被引量:50
11
作者 王克奇 杨少春 +1 位作者 戴天虹 白雪冰 《计算机应用与软件》 CSCD 2009年第7期109-111,共3页
支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出... 支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题。由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据。针对支持向量机的参数选择问题,提出了一种采用遗传算法优化最小二乘支持向量机参数的方法。结合LS-SVM lab工具箱,在MATLAB实验平台的仿真实验表明,该方法提高了支持向量机的参数选择效率,得到的参数对测试样本的分类结果是最优的,从而避免了人为设定参数的不足,同时缩短了优化时间。 展开更多
关键词 最小乘支持向量 遗传算法 参数选择 LS-SVMlab工具箱
在线阅读 下载PDF
基于遗传算法的多目标最小二乘支持向量机在近红外多组分定量分析中的应用 被引量:18
12
作者 徐冰 王星 +4 位作者 Dhaene Tom 史新元 Couckuyt Ivo 白雁 乔延江 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期638-642,共5页
近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应... 近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应建模策略可保证优化收敛于全局最优解。所建玉米多目标LS-SVM模型明显优于PLS1和PLS2模型;连翘多目标LS-SVM模型与PLS模型均可取得较好的校正和预测效果。两组数据中,径向基神经网络(RBFNN)模型均出现过拟合现象。多目标LS-SVM和单目标LS-SVM性能相近,但多目标LS-SVM建模运行一次即可得到结果,在NIR多组分定量分析中具有潜在应用优势。 展开更多
关键词 多目标最小乘支持向量 遗传算法 近红外 多组分定量 自适应建模
在线阅读 下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
13
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
在线阅读 下载PDF
基于最小二乘支持向量机算法的三维荧光光谱技术在中国白酒分类中的应用 被引量:17
14
作者 杨建磊 朱拓 +2 位作者 徐岩 范文来 武浩 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第1期243-246,共4页
为了对白酒的鉴别分类方法进行创新研究,文章对近百种白酒的荧光光谱进行了测定,并合成其三维荧光光谱图。经对比研究和反复仿真实验发现,通过所提取的白酒三维荧光光谱的3个特定参数,可以实现对白酒种类的准确分类。分类的准确率可达87... 为了对白酒的鉴别分类方法进行创新研究,文章对近百种白酒的荧光光谱进行了测定,并合成其三维荧光光谱图。经对比研究和反复仿真实验发现,通过所提取的白酒三维荧光光谱的3个特定参数,可以实现对白酒种类的准确分类。分类的准确率可达87%以上。为了证明所选参数对白酒分类的有效性,把最小二乘支持向量机应用到白酒的鉴别分类中,并通过计算机模拟进行验证。同时还应用经典支持向量机、概率神经网络对所提取的相同数据进行分类和仿真,并将其仿真结果与使用最小二乘支持向量机仿真的结果进行比较。结果发现,使用最小二乘支持向量机可以取得更为准确的分类结果。 展开更多
关键词 白酒 荧光 分类 最小乘支持向量
在线阅读 下载PDF
最小二乘支持向量机算法研究 被引量:32
15
作者 朱家元 陈开陶 张恒喜 《计算机科学》 CSCD 北大核心 2003年第7期157-159,共3页
In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of lin... In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equa-tions, instead of quadratic programming for classical SVM. The approach is illustrated on a two-spiral benchmarkclassification problem. The results show that the LS-SVM is an efficient method for solving pattern recognition. 展开更多
关键词 支持向量 器学习 模式识别 最小二乘算法 函数估计
在线阅读 下载PDF
基于粒子群算法的最小二乘支持向量机在红花提取液近红外定量分析中的应用 被引量:20
16
作者 金叶 杨凯 +2 位作者 吴永江 刘雪松 陈勇 《分析化学》 SCIE CAS CSCD 北大核心 2012年第6期925-931,共7页
提出一种基于粒子群算法的最小二乘支持向量机(PSO-LS-SVM)方法,用于建立红花提取过程关键质控指标的定量分析模型。近红外光谱数据经波段选择、预处理和主成分分析(降维)后,利用粒子群优化(PSO)算法对最小二乘支持向量机算法中的参数... 提出一种基于粒子群算法的最小二乘支持向量机(PSO-LS-SVM)方法,用于建立红花提取过程关键质控指标的定量分析模型。近红外光谱数据经波段选择、预处理和主成分分析(降维)后,利用粒子群优化(PSO)算法对最小二乘支持向量机算法中的参数进行优化,然后使用最优参数建立固含量和羟基红花黄色素A(HSYA)浓度的定量校正模型。将校正结果与偏最小二乘法回归(PLSR)和BP神经网络(BP-ANN)比较,并将所建的3个模型用于红花提取过程未知样本的预测。结果表明,BP-ANN校正结果优于PSO-LS-SVM和PLSR,但是对验证集和未知样品集的预测能力较差,而PSO-LS-SVM和PLSR模型的校正、验证结果相近,相关系数均大于0.987,RMSEC和RMSEP值相近且小于0.074,RPD值均大于6.26,RSEP均小于5.70%。对于未知样品集,PSO-LS-SVM模型的RPD值大于8.06,RMSEP和RSEP值分别小于0.07%和5.84%,较BP-ANN和PLSR模型更低。本研究所建立的PSO-LS-SVM模型表现出较好的模型稳定性和预测精度,具有一定的实践意义和应用价值,可推广用于红花提取过程的近红外光谱定量分析。 展开更多
关键词 近红外光谱 粒子群优化 最小乘支持向量 红花提取液
在线阅读 下载PDF
粒子群优化–最小二乘支持向量机算法在高压断路器机械故障诊断中的应用 被引量:24
17
作者 贾嵘 洪刚 +1 位作者 薛建辉 崔建武 《电网技术》 EI CSCD 北大核心 2010年第3期197-200,共4页
提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,... 提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,PSO)算法,优化LSSVM算法的参数。算例表明:PSO-LSSVM算法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统的支持向量机(support vector machine,SVM)算法,适用于高压断路器机械故障诊断。 展开更多
关键词 高压断路器 最小乘支持向量 粒子群优化 故障诊断
在线阅读 下载PDF
最小二乘支持向量机联合改进果蝇优化算法的CFB锅炉燃烧优化 被引量:13
18
作者 张文广 张越 +2 位作者 孙亚洲 高明明 李宝贵 《热力发电》 CAS 北大核心 2016年第7期44-49,共6页
针对电厂循环流化床(CFB)锅炉降低污染物排放和提高锅炉燃烧效率的问题,本文首先应用最小二乘支持向量机(LS-SVM)建立了锅炉效率、NO_x和SO_2排放特性的软测量模型,并对比了LS-SVM和BP神经网络模型的性能;然后基于LS-SVM建立的模型,提出... 针对电厂循环流化床(CFB)锅炉降低污染物排放和提高锅炉燃烧效率的问题,本文首先应用最小二乘支持向量机(LS-SVM)建立了锅炉效率、NO_x和SO_2排放特性的软测量模型,并对比了LS-SVM和BP神经网络模型的性能;然后基于LS-SVM建立的模型,提出了3种优化策略,采用改进果蝇优化算法(MFOA)在一定范围内对CFB锅炉运行工况的可调参数进行优化。结果表明:LS-SVM模型与BP神经网络模型相比,训练时间较短,预测精度较高,泛化能力较强;CFB锅炉效率最多提高了0.61%,NO_x和SO_2排放质量浓度最多降低了7.88%和18.13%。 展开更多
关键词 CFB 锅炉效率 NOx SO2 最小乘支持向量 改进果蝇优化算法 燃烧优化
在线阅读 下载PDF
基于改进果蝇算法与最小二乘支持向量机的轧制力预测算法研究 被引量:12
19
作者 杨景明 郭秋辰 +3 位作者 孙浩 马明明 车海军 赵新秋 《计量学报》 CSCD 北大核心 2016年第5期505-508,共4页
铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采... 铝合金板材精轧过程中,轧制力是影响板材质量的重要因素。为了满足轧制现场的轧制力预报精度要求,采用改进果蝇算法(FOA)与最小二乘支持向量机(LSSVM)相结合进行轧制力预测。改进了果蝇算法的味道浓度判定函数和步长设定方法,采用了分组并行搜索的策略,进而提出一种基于改进FOA—LSSVM的轧制力智能预报方法。将该方法用于铝热连轧现场数据的仿真实验,结果表明样本预测误差在10%以内,其中84%的样本误差在5%以内,精度优于传统模型。 展开更多
关键词 计量学 轧制力预测 最小乘支持向量 果蝇算法
在线阅读 下载PDF
最小二乘支持向量机算法与紫外光谱法用于鉴别清开灵注射液四混中间体 被引量:14
20
作者 朱向荣 李娜 +2 位作者 史新元 乔延江 张卓勇 《分析化学》 SCIE CAS CSCD 北大核心 2008年第6期770-774,共5页
采用一阶导数数据预处理,最小二乘支持向量机(LS-SVM)紫外可见光谱建模,对清开灵注射液四混中间体进行质量评价。以二次网格法和十折交叉验证法优化建模参数,预测集的总正确率和接受器工作特性曲线(ROC)下面积分别可达98.0%和0.983。结... 采用一阶导数数据预处理,最小二乘支持向量机(LS-SVM)紫外可见光谱建模,对清开灵注射液四混中间体进行质量评价。以二次网格法和十折交叉验证法优化建模参数,预测集的总正确率和接受器工作特性曲线(ROC)下面积分别可达98.0%和0.983。结果表明,与经典的支持向量机相比,LSSVM鉴别准确率更高,模型的泛化能力更强。可用于清开灵注射液生产过程中质量控制,为中药注射液生产过程的质量控制提供了一条有效的途径。 展开更多
关键词 清开灵注射液 中间体 紫外光谱法 最小乘支持向量
在线阅读 下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部