A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
Bus mass is an important factor that affects fuel consumption and one of the key input parameters associated with automatic shift and hybrid electric vehicle (HEV) energy management strategy. A city bus mass estimat...Bus mass is an important factor that affects fuel consumption and one of the key input parameters associated with automatic shift and hybrid electric vehicle (HEV) energy management strategy. A city bus mass estimation method based on kinetic energy theorem was proposed in this paper. The real-time data including vehicle speed and engine torque were collected by a remote data acquisition system. The samples in the process of being accelerated were selected to conduct vehicle mass estimation at the same bus stop with the same gear. The average estimation error is 2. 92% after the verification by actual data. Compared with the method based on recursive least squares, the algorithm based on kinetic energy theorem requires less sample length and the estimation error is smaller. Therefore, the method is more suitable for the bus mass estimation. The influences of gear, rolling resistance coefficient, wind resistance coefficient and road slope on mass estimation accuracy were analyzed.展开更多
In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the ...In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the process flow of RLS algorithm are described.Through example simulation,simulation figures of the adaptive de-noising system are obtained.By analysis and comparison,it can be proved that RLS adaptive filtering is capable of eliminating the noises and obtaining useful signals in a relatively good manner.Therefore,the validity of this method and the rationality of this system are demonstrated.展开更多
Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive...Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.展开更多
A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industr...A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restriction. ARX-PLS decoupling character enables to turn the multivariable model predictive control(MPC) controller design in original space into the multi-loop single input single output(SISO) MPC controllers design in latent space.An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control(IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent.展开更多
High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-var...High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.展开更多
A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-...A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.展开更多
Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulti...Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.展开更多
Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed ...Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.展开更多
In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold st...In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.展开更多
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金National International Cooperation in Science and Technology Special Project(No.2013DFG62890)
文摘Bus mass is an important factor that affects fuel consumption and one of the key input parameters associated with automatic shift and hybrid electric vehicle (HEV) energy management strategy. A city bus mass estimation method based on kinetic energy theorem was proposed in this paper. The real-time data including vehicle speed and engine torque were collected by a remote data acquisition system. The samples in the process of being accelerated were selected to conduct vehicle mass estimation at the same bus stop with the same gear. The average estimation error is 2. 92% after the verification by actual data. Compared with the method based on recursive least squares, the algorithm based on kinetic energy theorem requires less sample length and the estimation error is smaller. Therefore, the method is more suitable for the bus mass estimation. The influences of gear, rolling resistance coefficient, wind resistance coefficient and road slope on mass estimation accuracy were analyzed.
基金The Key Program of National Natural Science of China(No.U1261205)Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘In view of the problem that noises are prone to be mixed in the signals,an adaptive signal de-noising system based on reursive least squares (RLS) algorithm is introduced.The principle of adaptive filtering and the process flow of RLS algorithm are described.Through example simulation,simulation figures of the adaptive de-noising system are obtained.By analysis and comparison,it can be proved that RLS adaptive filtering is capable of eliminating the noises and obtaining useful signals in a relatively good manner.Therefore,the validity of this method and the rationality of this system are demonstrated.
基金National Natural Science Foundation of China(No.51467008)
文摘Considering that the prediction accuracy of the traditional traffic flow forecasting model is low,based on kernel adaptive filter(KAF)algorithm,kernel least mean square(KLMS)algorithm and fixed-budget kernel recursive least-square(FB-KRLS)algorithm are presented for online adaptive prediction.The computational complexity of the KLMS algorithm is low and does not require additional solution paradigm constraints,but its regularization process can solve the problem of regularization performance degradation in high-dimensional data processing.To reduce the computational complexity,the sparse criterion is introduced into the KLMS algorithm.To further improve forecasting accuracy,FB-KRLS algorithm is proposed.It is an online learning method with fixed memory budget,and it is capable of recursively learning a nonlinear mapping and changing over time.In contrast to a previous approximate linear dependence(ALD)based technique,the purpose of the presented algorithm is not to prune the oldest data point in every time instant but it aims to prune the least significant data point,thus suppressing the growth of kernel matrix.In order to verify the validity of the proposed methods,they are applied to one-step and multi-step predictions of traffic flow in Beijing.Under the same conditions,they are compared with online adaptive ALD-KRLS method and other kernel learning methods.Experimental results show that the proposed KAF algorithms can improve the prediction accuracy,and its online learning ability meets the actual requirements of traffic flow and contributes to real-time online forecasting of traffic flow.
基金Supported by the National Natural Science Foundation of China (61174114, 60574047), the National High Technology Re-search and Development Program of China (2007AA04Z168) and the Research Fund for the Doctoral Program of Higher Education of China (20120101130016).
文摘A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restriction. ARX-PLS decoupling character enables to turn the multivariable model predictive control(MPC) controller design in original space into the multi-loop single input single output(SISO) MPC controllers design in latent space.An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control(IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent.
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.
基金Project(51375430)supported by the National Natural Science Foundation of China
文摘A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.
文摘Heavy floods occur frequently in the Senegal River Basin, causing catastrophic flooding downstream the river rating station of Bakel. Anticipating the occurrence of such phenomena is the only way to reduce the resulting damages. Flood forecasting is a necessity. Flood forecasting plays also an important role in the implementation of flood management scenarios and in the protection of hydro electric structures. Many methods are applied. The most complete are based on the conservation laws of physics governing the free surface flow. These methods need a complete description of the geometry of the river and their implementation requires also huge investments. In practice the river basin can be considered as a system of inputs-outputs related by a transfer function. In this paper the authors first used a multiple linear regression model with constant parameters estimated by the ordinary least square method to simulate the propagation of the floods in the upstream part of the Senegal river basin. The authors then apply statistical and graphical criteria of goodness-of-fit to test the suitability of this model. Three procedures of parameters updating have then been added to this linear model: the Kalman filter method, the recursive least square method, and the stochastic gradient method The criteria of goodness-of-fit used above have shown that the stochastic gradient method, although more rudimentary, represents better the flood propagation in the head basin of the Senegal river upstream Bakel. This result is particularly interesting because data influenced by Manantali Dam are used.
基金Supported by the National Natural Science Foundation of China(61473072)
文摘Many chemical processes can be modeled as Wiener models, which consist of a linear dynamic subsystem followed by a static nonlinear block. In this paper, an effective discrete-time adaptive control method is proposed for Wiener nonlinear systems with uncertainties. The parameterization model is derived based on the inverse of the nonlinear function block. The adaptive control method is motivated by self-tuning control and is derived from a modified Clarke criterion function, which considers both tracking properties and control efforts. The uncertain parameters are updated by a recursive least squares algorithm and the control law exhibits an explicit form. The closed-loop system stability properties are discussed. To demonstrate the effectiveness of the obtained results, two groups of simulation examples including an application to composition control in a continuously stirred tank reactor(CSTR) system are studied.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,ChinaProject(N140704001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the control performance of strip rolling mill, theoretical model of the hydraulic gap control(HGC) system was established. HGC system offline identification scheme was designed for a tandem cold strip mill, the system model parameters were identified by ARX model, and the identified model was verified. Taking the offline identified parameters as the initial values, online identification using recursive least square was carried out with model parameters changing. For the purpose of improving system robustness and decreasing the sensitivity due to model errors, the HGC system based on generalized predictive control(GPC) was designed, and simulation experiments for traditional controller and GPC controller were conducted. The results show that both controllers acquire good control effect with model matching. When the model mismatches, for the traditional controller, the overshot will increase to 76.7% and the rising time will increase to 165.7 ms, which cannot be accepted by HGC system; for the GPC controller, the overshot is less than 8.5%, and the rising time is less than 26 ms in any case.