期刊文献+
共找到5,917篇文章
< 1 2 250 >
每页显示 20 50 100
基于向量加权平均算法优化最小二乘支持向量机的电价短期预测
1
作者 陈晓华 吴杰康 杨国荣 《黑龙江电力》 2025年第1期1-7,共7页
针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模... 针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模型;选取某地区2010年1月1日-15日的电力价格数据进行分析。仿真结果表明:与核极限学习机、长短期记忆神经网络、LSSVM预测模型相比,INFO-LSSVM预测模型的预测效果更好;利用果蝇优化算法优化LSSVM的惩罚因子和核函数参数构建FOA-LSSVM预测模型的预测效果不及INFO-LSSVM预测模型,并且INFO的收敛速度比FOA快。通过与对照预测模型对比表明,INFO-LSSVM预测模型具有更好的预测性能。 展开更多
关键词 向量加权平均算法 最小二乘支持向量 电价预测 短期预测 INFO-LSSVM预测模型
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
2
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘-支持向量机的制粉过程煤粉细度软测量模型 被引量:10
3
作者 张立岩 岳恒 +2 位作者 张君 丁进良 柴天佑 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第z2期1932-1935,共4页
煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的... 煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的有效控制。该文通过对制粉过程中影响煤粉细度的因素进行分析,采用基于最小二乘-支持向量机的方法建立煤粉细度的软测量模型。通过模型误差最小的原则,确定了模型相关参数,解决了样本数量较少,常规软测量方法难以实现的问题。通过现场采集的样本数据进行的实验研究表明了该模型的有效性。 展开更多
关键词 软测量 煤粉细度 最小二乘-支持向量机
原文传递
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
4
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
在线阅读 下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
5
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小二乘支持向量
在线阅读 下载PDF
基于最小二乘孪生支持向量机的不确定数据学习算法 被引量:1
6
作者 刘锦能 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量 不平行平面学习 数据不确定性 分类
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:1
7
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小二乘支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于云粒子群-最小二乘支持向量机的传感器温度补偿 被引量:30
8
作者 张朝龙 江巨浪 +3 位作者 李彦梅 陈世军 査长礼 王陈宁 《传感技术学报》 CAS CSCD 北大核心 2012年第4期472-477,共6页
针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的... 针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的参数进行优化选择,建立CMPSO-LSSVM传感器温度补偿模型。将该模型应用于振弦式传感器的温度补偿,通过实验证明了该温度补偿方法优于当前其他主要方法。 展开更多
关键词 云模型 粒子群优化 最小二乘支持向量 温度补偿
在线阅读 下载PDF
构建支持向量机-偏最小二乘法为药物构效关系建模 被引量:13
9
作者 李剑 陈德钊 +1 位作者 成忠 叶子青 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第2期263-266,共4页
为研究药物构效关系积累样本数据的过程中,需为小样本建模。此时较易造成过拟合,影响模型的预测性能和稳定性。为此可用偏最小二乘(PLS)法从样本数据中成对地提取最优成分,消除自变量间的复共线性,并有效的降维,然后应用最小二乘支持向... 为研究药物构效关系积累样本数据的过程中,需为小样本建模。此时较易造成过拟合,影响模型的预测性能和稳定性。为此可用偏最小二乘(PLS)法从样本数据中成对地提取最优成分,消除自变量间的复共线性,并有效的降维,然后应用最小二乘支持向量机对成对成分进行非线性回归,并以基于误差修正的策略调整,使之更有效地表达自、因变量间的非线性关系。由此构建为EB-LSSVM-PLS算法,所建模型的预报精度高,稳定性良好。将其应用于新型黄烷酮类衍生物的QSAR建模,效果令人满意,其泛化性能优于其它方法。 展开更多
关键词 最小二乘支持向量 最小二乘 基于误差修正 小样本 构效关系 泛化性能
在线阅读 下载PDF
具有间隔分布优化的最小二乘支持向量机
10
作者 刘玲 巩荣芬 +1 位作者 储茂祥 刘历铭 《微电子学与计算机》 2024年第8期1-9,共9页
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS... 最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。 展开更多
关键词 最小二乘支持向量 大间隔分布 间隔分布优化 权重线性损失
在线阅读 下载PDF
用最小二乘支持向量机的可见-近红外光谱测定蜂花粉贮存时间 被引量:5
11
作者 金航峰 黄凌霞 +2 位作者 吴迪 金佩华 楼程富 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第3期216-219,共4页
为了探索一种快速有效的蜂花粉新鲜程度检测方法,利用可见-近红外光谱技术结合最小二乘支持向量机(LS-SVM)对蜂花粉的贮存时间进行了检测.选择常温环境中贮存时间为4~50天(共计47天)的茶花蜂花粉作为研究对象,将全光谱数据作为输入变... 为了探索一种快速有效的蜂花粉新鲜程度检测方法,利用可见-近红外光谱技术结合最小二乘支持向量机(LS-SVM)对蜂花粉的贮存时间进行了检测.选择常温环境中贮存时间为4~50天(共计47天)的茶花蜂花粉作为研究对象,将全光谱数据作为输入变量建立了LS-SVM模型.结果显示,该LS-SVM模型预测效果较好,预测相关系数rp达到了0.996,预测标准误差(SEP)和预测均方根误差(RMSEP)的值分别为1.310和1.308,优于偏最小二乘法(PLS)和主成分回归(PCR)的预测结果,说明基于LS-SVM的可见-近红外光谱技术能够很好地对花粉贮存时间进行检测.同时对不同贮存时间段花粉的预测效果进行了比较,发现该LS-SVM模型适用于对第11~50天范围的贮存时间进行检测. 展开更多
关键词 可见-近红外光谱 贮存时间 最小二乘支持向量
在线阅读 下载PDF
基于奇异值分解和最小二乘支持向量机的气-液两相流流型识别方法 被引量:6
12
作者 孙斌 周云龙 +1 位作者 赵鹏 关跃波 《核动力工程》 EI CAS CSCD 北大核心 2007年第6期62-66,共5页
针对气-液两相流压差波动信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了一种基于奇异值分解和最小二乘支持向量机(LS-SVM)的流型识别方法。该方法首先采用经验模态分解将气-液两相流压差波动信号分... 针对气-液两相流压差波动信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了一种基于奇异值分解和最小二乘支持向量机(LS-SVM)的流型识别方法。该方法首先采用经验模态分解将气-液两相流压差波动信号分解为多个平稳的固有模态函数之和,并形成初始特征向量矩阵;对初始特征向量矩阵进行奇异值分解,得到矩阵的奇异值,将其作为流型的特征向量,根据LS-SVM分类器的输出结果来识别流型。对水平管内空气-水两相流4种典型流型进行识别,结果表明,与神经网络相比,该方法具有更高的识别率和识别速度。 展开更多
关键词 流型识别 经验模态分解 奇异值分解 最小二乘支持向量
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型
13
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小二乘支持向量 遗传算法
在线阅读 下载PDF
最小二乘支持向量机(LS-SVM)在短期空调负荷预测中的应用 被引量:11
14
作者 唐莉 唐中华 靳俊杰 《建筑节能》 CAS 2013年第2期56-58,共3页
将最小二乘支持向量机(LS-SVM)引入空调负荷预测中,在Fortran软件平台上建立LS-SVM空调负荷预测模型,并将其应用于绵阳一栋办公类建筑的空调负荷预测中。试验表明所提出的方法预测精度较高,运算简单,收敛速度快,具有较强的可行性和实用性。
关键词 最小二乘支持向量 短期空调负荷 预测 fortran软件建模
在线阅读 下载PDF
基于D-S证据理论的导弹制导控制系统的联合最小二乘支持向量机预测模型 被引量:12
15
作者 丛林虎 徐廷学 荀凯 《兵工学报》 EI CAS CSCD 北大核心 2015年第8期1466-1472,共7页
针对导弹制导控制系统电子设备密集、各性能特征参数间相互耦合关联性强、使用传统最小二乘支持向量机(LS-SVM)预测精度不高的问题,通过分析特征参数的时间相关性与空间相关性,对传统LS-SVM进行了改进,并利用D-S证据理论在数据融合中的... 针对导弹制导控制系统电子设备密集、各性能特征参数间相互耦合关联性强、使用传统最小二乘支持向量机(LS-SVM)预测精度不高的问题,通过分析特征参数的时间相关性与空间相关性,对传统LS-SVM进行了改进,并利用D-S证据理论在数据融合中的优势,将传统与改进的LSSVM进行融合,建立了联合最小二乘支持向量机(ULS-SVM)预测模型。以导弹制导控制系统为例,实现了关键参数预测。结果验证了模型的合理性与有效性。 展开更多
关键词 兵器科学与技术 D-S证据理论 导弹 预测模型 最小二乘支持向量
在线阅读 下载PDF
基于差分进化算法-最小二乘支持向量机的软测量建模 被引量:17
16
作者 林碧华 顾幸生 《化工学报》 EI CAS CSCD 北大核心 2008年第7期1681-1685,共5页
软测量技术是解决工业过程中存在的一类难以在线测量参数估计问题的有效方法,该技术的核心是建立优良的数学模型。支持向量机是基于统计学理论的一种机器学习方法,最小二乘支持向量机是一种扩展的支持向量机,相对于支持向量机具有较快... 软测量技术是解决工业过程中存在的一类难以在线测量参数估计问题的有效方法,该技术的核心是建立优良的数学模型。支持向量机是基于统计学理论的一种机器学习方法,最小二乘支持向量机是一种扩展的支持向量机,相对于支持向量机具有较快求解速度。最小二乘支持向量机存在着参数选择的问题,针对这个问题,采用差分进化算法进行参数选择。提出基于差分进化算法的最小二乘支持向量机应用于软测量建模,并将其应用于对苯二甲酸中对羧基苯甲醛含量测试的软测量建模中,获得了满意的结果。 展开更多
关键词 软测量 最小二乘支持向量 差分进化算法 对羧基苯甲醛
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:1
17
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子群优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
进化-最小二乘支持向量机的边坡稳定性估计 被引量:6
18
作者 马文涛 孔亮 《岩土力学》 EI CAS CSCD 北大核心 2009年第12期3876-3880,共5页
针对最小二乘支持向量机的参数选择问题,用遗传算法来搜索最小二乘支持向量机的相关参数,避免了人工搜索参数的盲目性,提高了模型的推广性能。根据大量的实际边坡工程数据,建立了基于进化-最小二乘支持向量机的边坡稳定性模型,并将其应... 针对最小二乘支持向量机的参数选择问题,用遗传算法来搜索最小二乘支持向量机的相关参数,避免了人工搜索参数的盲目性,提高了模型的推广性能。根据大量的实际边坡工程数据,建立了基于进化-最小二乘支持向量机的边坡稳定性模型,并将其应用于估计丁家河磷矿自然边坡稳定状况。计算结果与工程实际情况一致,表明了该方法的有效性和合理性。 展开更多
关键词 边坡稳定 最小二乘支持向量 遗传算法 参数选择
在线阅读 下载PDF
最小二乘支持向量机-粒子群算法在地下厂房围岩参数反分析中的应用 被引量:2
19
作者 杨继华 齐三红 +1 位作者 郭卫新 张党立 《隧道建设(中英文)》 北大核心 2018年第11期1800-1806,共7页
为准确确定地下厂房围岩的弹性模量、泊松比、黏聚力、内摩擦角、侧压力系数等参数,以正交设计、最小二乘支持向量机和粒子群算法等现代数学方法为基本手段,建立基于位移增量的围岩参数反分析方法。以CCS水电站大型地下厂房为研究背景,... 为准确确定地下厂房围岩的弹性模量、泊松比、黏聚力、内摩擦角、侧压力系数等参数,以正交设计、最小二乘支持向量机和粒子群算法等现代数学方法为基本手段,建立基于位移增量的围岩参数反分析方法。以CCS水电站大型地下厂房为研究背景,通过工程地质条件研究选取8#机组剖面作为分析对象,采用二维弹塑性有限元方法建立地质结构分析模型。以地下厂房洞室群分层开挖多点位移计实测位移增量为依据,对CCS水电站地下厂房区域围岩力学特性及地应力场特征进行反分析。研究结果表明:主厂房第Ⅵ层与第Ⅰ层开挖和主变室第4层与第1层开挖所产生的位移增量计算值与多点位移计实测值吻合较好,最大相对误差小于10%,说明采用最小二乘支持向量机和粒子群算法相结合的反分析方法在工程上是可行的,且效果较为显著。 展开更多
关键词 地下厂房 最小二乘支持向量 粒子群算法 有限元模拟 位移增量 反分析法
在线阅读 下载PDF
基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测 被引量:2
20
作者 秦宁宁 《造纸科学与技术》 2024年第1期42-47,共6页
造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分... 造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分解,得到一系列固有模态分量(IMF),利用排列熵对IMF分量进行分析,确定高噪声IMF分量;使用小波降噪对高噪声IMF分量展开抗干扰处理。然后,使用互信息特征选择方法对抗干扰处理后的入侵数据进行特征提取。最后,将提取到的入侵数据特征作为输入数据,通过最小二乘支持向量机(LS-SVM)建立一个判别函数,该函数根据输入数据的特征值进行分类,并判断网络中是否存在高隐蔽性入侵行为。实验结果表明,所提方法最高入侵检测准确率达到0.98,Kappa统计量最大为0.99,表明所提方法的数据处理效果好、网络入侵检测精度高。 展开更多
关键词 网络入侵检测 最小二乘支持向量 小波阈值降噪 排列熵 互信息特征选择
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部