期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
基于最大相关-最小冗余的动作识别算法 被引量:2
1
作者 龚静 李英杰 黄欣阳 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第6期158-167,共10页
为了提高动作的识别精度与鲁棒性,降低冗余特征,提高算法效率,设计了一种基于最大相关-最小冗余(Max-Correlation and Min-Redundancy,MCMR)的动作识别算法.首先,为了消除噪声影响,减少计算成本,利用符号聚集近似(SAX)技术将连续图像序... 为了提高动作的识别精度与鲁棒性,降低冗余特征,提高算法效率,设计了一种基于最大相关-最小冗余(Max-Correlation and Min-Redundancy,MCMR)的动作识别算法.首先,为了消除噪声影响,减少计算成本,利用符号聚集近似(SAX)技术将连续图像序列转换为离散符号;其次,为避免出现时间漂移问题,利用动态时间归整(Dynamic Time Warping,DTW)来计算符号特征的距离,提取符号序列的特征;然后,为了消除冗余的特征,定义了一个特征权重,根据权重对特征进行降序排列,引入最大相关-最小冗余技术消除相关性弱的特征,筛选出具有高相关性和低冗余的特征;最后,为了完成动作识别,根据筛选出的特征,利用k-近邻(K-Nearest Neighbor,KNN)进行分类器学习.结果表明:与当前动作识别算法相比,本文算法能够有效完成动作的识别与理解,具有较高的识别率,有效地降低了冗余特征,提高了算法的效率和鲁棒性. 展开更多
关键词 动作识别 最大相关-最小冗余 符号表示 动态时间归整 K-近邻
在线阅读 下载PDF
一种基于最大相关-最小冗余算法的输电线路故障定位方法 被引量:25
2
作者 卢诗华 孙密 +3 位作者 谢景海 郭嘉 贾祎轲 苏东禹 《电测与仪表》 北大核心 2020年第3期79-85,共7页
针对传统输电线路故障定位精度较低且易受故障后暂态分量影响的问题,提出一种基于数据驱动的输电线路故障定位方法。构建基于系统状态和故障位置的电力系统运行数据集,基于最大相关-最小冗余准则,在此数据集中挖掘关键特征与故障位置之... 针对传统输电线路故障定位精度较低且易受故障后暂态分量影响的问题,提出一种基于数据驱动的输电线路故障定位方法。构建基于系统状态和故障位置的电力系统运行数据集,基于最大相关-最小冗余准则,在此数据集中挖掘关键特征与故障位置之间的隐含关系,提取与故障位置最大相关且变量之间最小冗余的关键信息,构建与故障位置最相关的核心变量集,应用曲线拟合技术获取运行变量与故障位置之间的数学解析关系,综合多个特征信息给出准确的故障定位结果。仿真验证结果表明,与传统基于阻抗的故障定位方法相比,所提方法具有更高的故障定位精度,同时对故障后出现的暂态分量也有良好的适应能力,是一种准确快速的输电线路故障定位新方法。 展开更多
关键词 输电线路 故障定位 数据驱动 最大相关-最小冗余
在线阅读 下载PDF
基于最大相关和最小冗余准则及极限学习机的癫痫发作检测方法 被引量:3
3
作者 张新静 徐欣 +3 位作者 凌至培 黄永志 王心醉 王守岩 《计算机应用》 CSCD 北大核心 2014年第12期3614-3617,共4页
癫痫发作检测可以实现脑电分类和病灶定位,对癫痫的临床治疗具有重要意义。针对大数据量、高特征值空间长程脑电的快速和准确分类问题,提出一种基于最大相关和最小冗余准则及极限学习机的癫痫发作检测方法。对脑电信号进行短时傅里叶变... 癫痫发作检测可以实现脑电分类和病灶定位,对癫痫的临床治疗具有重要意义。针对大数据量、高特征值空间长程脑电的快速和准确分类问题,提出一种基于最大相关和最小冗余准则及极限学习机的癫痫发作检测方法。对脑电信号进行短时傅里叶变换,并选取能量时频分布为特征,利用基于最大相关和最小冗余准则的方法进行特征选择,并使用极限学习机、支持向量机和反向传播算法对癫痫不同状态进行分类和判别。实验结果表明,极限学习机的分类准确率和训练速度两方面性能优于支持向量机和反向传播算法,发作间期和发作期的分类准确率达到98%以上,训练时间仅为0.8 s,所提方法能够实时准确地检测癫痫发作。 展开更多
关键词 癫痫发作检测 最大相关最小冗余准则 极限学习机 支持向量机 反向传播算法
在线阅读 下载PDF
MRMR-SA-EGA-ELM的叶绿素a浓度预测模型研究
4
作者 陈优良 陶剑辉 +1 位作者 黄劲松 肖钢 《计算机应用与软件》 北大核心 2024年第4期60-66,共7页
为提高叶绿素a浓度的预测精度,以南太湖区域-湖州市新塘港2020年5月至11月份的水质监测数据为原始样本数据,使用最大相关最小冗余算法(MRMR)从原始样本数据中选取效果更优的特征值,作为预测模型的输入数据,将精英遗传算法(EGA)与模拟退... 为提高叶绿素a浓度的预测精度,以南太湖区域-湖州市新塘港2020年5月至11月份的水质监测数据为原始样本数据,使用最大相关最小冗余算法(MRMR)从原始样本数据中选取效果更优的特征值,作为预测模型的输入数据,将精英遗传算法(EGA)与模拟退火算法(SA)组合优化极限学习机(ELM)网络的初始参数,最终构建MRMR-SA-EGA-ELM叶绿素a浓度预测模型。实验结果表明,MRMR-SA-EGA-ELM模型预测叶绿素a浓度的平均绝对误差(MAE)、均方误差(MSE)、决定系数(R^(2))分别为1.009、1.607、0.903,而ELM模型预测结果的MAE、MSE、R^(2)分别为2.078、8.249、0.562,MRMR-SA-EGA-ELM模型的效果得到显著提升,可实现对叶绿素a浓度的准确预测。 展开更多
关键词 叶绿素A浓度 最大相关最小冗余 精英遗传算法 模拟退火算法 极限学习机
在线阅读 下载PDF
基于mRMR-BP算法的辛烷值损失预测模型研究 被引量:1
5
作者 姬子恒 朱建伟 陈海江 《智能计算机与应用》 2022年第3期169-172,179,共5页
化工过程建模一般通过数据关联或机理建模的方法来实现,但由于炼油工艺过程的复杂性以及设备的多样性,其操作变量之间具有高度非线性和相互强耦联的关系。在传统的数据关联模型中,变量相对较少、机理建模对原料的分析要求较高,对过程优... 化工过程建模一般通过数据关联或机理建模的方法来实现,但由于炼油工艺过程的复杂性以及设备的多样性,其操作变量之间具有高度非线性和相互强耦联的关系。在传统的数据关联模型中,变量相对较少、机理建模对原料的分析要求较高,对过程优化的响应不及时,效果并不理想。本文为了降低模型求解的复杂性,使用互信息法和mRMR算法,对367个变量进行降维处理,筛选出同时满足与辛烷值之间具有最大相关性,彼此之间又有最小的冗余性的主要变量。引入BP神经网络模型对辛烷值损失建立预测模型,经过数据训练与学习,产生辛烷值损失的预测结果,并分析主要操作变量对辛烷值损失的影响。 展开更多
关键词 辛烷值 互信息法 最大相关-最小冗余(mRMR)算法 BP神经网络
在线阅读 下载PDF
基于mRMR-SOM的异步电机轴承故障诊断研究
6
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
在线阅读 下载PDF
基于mRMR-IPSO的短期负荷预测双阶段特征选择 被引量:1
7
作者 焦龄霄 周凯 +4 位作者 张子熙 韩飞 时伟君 洪叶 罗朝丰 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期98-109,共12页
电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大... 电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大相关最小冗余(maxrelevance and min-redundancy,mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;采用基于改进的粒子群优化算法(improved particle swarm optimization,IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明,所提方法能在对原始特征集大幅降维的情况下提升预测精度。 展开更多
关键词 特征选择 负荷预测 最大相关最小冗余 改进的粒子群优化算法 LightGBM
在线阅读 下载PDF
基于MRMR-DRSN的电力系统暂态稳定评估
8
作者 龚铭扬 程瑞寅 +4 位作者 杨楚原 袁铭洋 崔梓琪 刘颂凯 张磊 《电力学报》 2024年第1期21-28,共8页
随着电力系统的广泛互联互通和相量测量单元(phasor measurement unit,PMU)的广泛应用,电力系统的安全运行面临着巨大挑战。为实现对电力系统运行状态快速、准确、有效的评估,提出了一种基于最大相关-最小冗余(max-relevance and min-re... 随着电力系统的广泛互联互通和相量测量单元(phasor measurement unit,PMU)的广泛应用,电力系统的安全运行面临着巨大挑战。为实现对电力系统运行状态快速、准确、有效的评估,提出了一种基于最大相关-最小冗余(max-relevance and min-redundancy,MRMR)准则和深度残差收缩网络(deep residual shrinkage network,DRSN)的暂态稳定评估方法。首先,利用MRMR准则进行特征选择,并将筛选后的关键特征和相应的类标签作为DRSN模型的输入和输出进行离线训练。然后,制定模型更新机制以应对电力系统运行工况变化。最后,基于PMU实时数据和训练好的DRSN,可立即提供暂态稳定评估结果。在IEEE 10机39节点系统上进行测试,结果表明,所提方法相较于其他数据驱动方法的综合评估性能更优异,同时还具有较好的抗噪性能和鲁棒性。 展开更多
关键词 电力系统 暂态稳定评估 相量测量单元 最大相关-最小冗余准则 深度残差收缩网络 模型更新
在线阅读 下载PDF
基于蚁群算法的表面肌电信号特征选择 被引量:2
9
作者 黄虎 谢洪波 《北京生物医学工程》 2012年第2期164-169,共6页
目的为提高假肢系统对动作信号的识别速度,设计了基于优化蚁群算法(ant colonyoptimization,ACO)的特征选择法,对表面肌电信号(surface electromyography,sEMG)高维特征向量降维以减少计算负担。方法以特征与目标类型之间互信息关系作... 目的为提高假肢系统对动作信号的识别速度,设计了基于优化蚁群算法(ant colonyoptimization,ACO)的特征选择法,对表面肌电信号(surface electromyography,sEMG)高维特征向量降维以减少计算负担。方法以特征与目标类型之间互信息关系作为启发函数,通过蚁群算法选出最佳特征子集,最后用已训练好的人工神经网络检验其分类性能。结果对10名健康受试者进行了手腕部动作的肌电信号模式分类实验。与传统主成分分析法(principle component analysis,PCA)相比,该算法选出的特征子集提高了识别准确率,并显著降低了原始特征集的特征维数,进而简化分类器的结构,减少计算开销。结论本方法在实时性要求高的肌电控制假肢等系统中具有良好的应用前景。 展开更多
关键词 表面肌电信号 特征选择 蚁群算法 最小冗余-最大相关算法 模式识别
在线阅读 下载PDF
面向胎盘植入产前诊断的医学语义特征提取算法 被引量:6
10
作者 潘晓晓 叶东毅 +2 位作者 颜建英 张栋 杨丹林 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期481-489,共9页
胎盘植入由于其临床特征隐匿,尚无一种敏感性、特异性高的产前诊断手段,因此文中将数据的特征提取方法引入胎盘植入产前诊断领域,从特征相关性的角度,提出胎盘植入有效医学语义的多目标特征优化问题,并给出求解该问题的一种改进的非支... 胎盘植入由于其临床特征隐匿,尚无一种敏感性、特异性高的产前诊断手段,因此文中将数据的特征提取方法引入胎盘植入产前诊断领域,从特征相关性的角度,提出胎盘植入有效医学语义的多目标特征优化问题,并给出求解该问题的一种改进的非支配排序遗传算法II(NSGA-II).基于实际胎盘植入相关临床数据的计算结果表明,文中算法能从复杂的胎盘植入相关临床数据中提取具有胎盘植入有效语义的特征集合.经过接收者操作特征(ROC)曲线分析,提取的特征医学语义具有较高的诊断价值,可为产科医师研究胎盘植入的发病机制和及时产前诊断提供有效的辅助手段.文中研究还发现,一些临床生化检查指标具有重要作用,可作为胎盘植入产前诊断的有效依据. 展开更多
关键词 胎盘植入(PA) 特征选择 最大相关最小冗余算法( mRMR) 非支配排序遗传算法II (NSGA-II)
在线阅读 下载PDF
基于mRMR和MA-RELM的火电厂出口SO_(2)质量浓度预测 被引量:12
11
作者 金秀章 刘岳 +1 位作者 赵文杰 于静 《动力工程学报》 CAS CSCD 北大核心 2022年第7期664-670,676,共8页
提出一种基于最大相关最小冗余(mRMR)算法和蜉蝣算法优化正则化极限学习机(MA-RELM)的出口SO_(2)质量浓度预测模型。通过机理分析确定初始输入变量,利用改进的时延分析方法对初始输入变量进行时延补偿,采用mRMR算法对各个初始输入变量... 提出一种基于最大相关最小冗余(mRMR)算法和蜉蝣算法优化正则化极限学习机(MA-RELM)的出口SO_(2)质量浓度预测模型。通过机理分析确定初始输入变量,利用改进的时延分析方法对初始输入变量进行时延补偿,采用mRMR算法对各个初始输入变量进行重要性排序,搭建正则化极限学习机(RELM)预测模型,并利用蜉蝣算法确定模型参数。结果表明:与最小二乘支持向量机(LSSVM)、长短期记忆网络(LSTM)和极限学习机(ELM)相比,RELM预测模型的均方根误差分别降低了36%、38%和26%;与粒子群算法(PSO)和灰狼算法(GWO)寻优后的模型相比,MA-RELM预测模型误差最低,该模型能够对出口SO_(2)质量浓度进行准确预测。 展开更多
关键词 RELM 蜉蝣算法 最大相关最小冗余 预测模型
在线阅读 下载PDF
邻苯二甲酸酯类化合物正辛醇-水分配系数的QSPR研究 被引量:20
12
作者 隆兴兴 牛军峰 史姝琼 《环境科学》 EI CAS CSCD 北大核心 2006年第11期2318-2322,共5页
采用PM3算法计算邻苯二甲酸酯类化合物(PAEs)的量子化学参数,应用偏最小二乘(PLS)算法建立了PAEs的正辛醇-水分配系数(KOW)的定量结构-性质相关(QSPR)模型.模型的结果表明,用量子化学参数建立的QSPR模型相关性显著,具有较好的稳健性和... 采用PM3算法计算邻苯二甲酸酯类化合物(PAEs)的量子化学参数,应用偏最小二乘(PLS)算法建立了PAEs的正辛醇-水分配系数(KOW)的定量结构-性质相关(QSPR)模型.模型的结果表明,用量子化学参数建立的QSPR模型相关性显著,具有较好的稳健性和预测能力,因此,利用该模型可对其他PAEs分子的lgKOW值进行初步预测.模型的结果表明,影响lgKOW的主要量子化学参数是分子总能量TE、相对分子质量Mr、平均分子极化率α和分子生成热ΔHf.lgKOW随着Mr和α的增大而增大,随着TE和ΔHf的增大而减小. 展开更多
关键词 邻苯二甲酸酯(PAEs) 定量结构-性质相关(QSPR) 正辛醇-水分配系数(Kow) PM3算法 最小二乘(PLS)
在线阅读 下载PDF
一种基于组策略的过滤式特征选择算法 被引量:4
13
作者 许尧 胡学钢 李培培 《计算机应用研究》 CSCD 北大核心 2016年第5期1322-1326,共5页
MRMR算法具有快速、高效等优势,在处理高维数据方面较为流行。提出一种基于组策略的MRMR改进算法(MRMRE),该算法不仅考虑单个特征属性的相关性与冗余性,同时针对特征组间的相互关系进行研究。算法以MRMR算法为框架,以CCA作为度量基准,选... MRMR算法具有快速、高效等优势,在处理高维数据方面较为流行。提出一种基于组策略的MRMR改进算法(MRMRE),该算法不仅考虑单个特征属性的相关性与冗余性,同时针对特征组间的相互关系进行研究。算法以MRMR算法为框架,以CCA作为度量基准,选择SVMs作为基分类器,使其特征选择效果提升。在UCI机器学习数据库中图像与基因序列数据集上的大量实验表明,与MRMR算法相比,所提出的算法其特征选择结果具有更高的结果稳定性与分类精度。 展开更多
关键词 特征选择 组策略 最大相关最小冗余算法 典型相关分析
在线阅读 下载PDF
基于经验模态分解与特征相关分析的短期负荷预测方法 被引量:93
14
作者 孔祥玉 李闯 +2 位作者 郑锋 于力 马溪原 《电力系统自动化》 EI CSCD 北大核心 2019年第5期46-56,共11页
提出了一种基于经验模态分解与特征相关分析的短期负荷预测新方法。该方法从分解负荷序列入手,采用经验模态分解将原始负荷时间序列分解成不同频率的本征模函数(IMF)分量和残差分量,以弱化复杂影响因素环境下原始序列的波动性,获取更具... 提出了一种基于经验模态分解与特征相关分析的短期负荷预测新方法。该方法从分解负荷序列入手,采用经验模态分解将原始负荷时间序列分解成不同频率的本征模函数(IMF)分量和残差分量,以弱化复杂影响因素环境下原始序列的波动性,获取更具规律性的分量。然后运用最小冗余度最大相关性标准(mRMR)技术分析各IMF分量和日类型、天气、电价等特征信息之间的相关性,获得最佳特征集。最后采用基于智能算法的最小二乘支持向量机(LSSVM)负荷预测模型对各经验模态分量进行预测,并将各分量预测结果叠加得到最终负荷预测值。以某电网实际数据进行算例分析,结果表明所提出的组合模型能够更准确地对外部因素敏感的短期负荷进行预测。 展开更多
关键词 负荷预测 经验模态分解 智能算法 最小冗余最大相关
在线阅读 下载PDF
基于mRMR-BO优化Stacking集成模型的NO_(x)浓度动态软测量 被引量:3
15
作者 金秀章 乔鹏 史德金 《热力发电》 CAS CSCD 北大核心 2023年第10期122-128,共7页
针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance... 针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance and min-redundancy,mRMR)结合贝叶斯优化算法(Bayesian optimization,BO)优化Stacking集成模型的SCR烟气脱硝系统入口NO_(x)质量浓度动态软测量模型。针对动态NO_(x)生成过程中静态单一模型预测精度降低及辅助变量与入口NO_(x)质量浓度时间异步的问题,利用mRMR-BO结合模型进行辅助变量筛选,Copula熵(copula entropy,CE)确定辅助变量迟延,BO结合模型确定辅助变量阶次,将TCN及LASSO利用Stacking法集成,使用含有迟延时间及阶次信息的辅助变量构建动态Stacking集成软测量模型。仿真结果显示:集成模型较TCN及LASSO单一网络的均方根误差、平均绝对误差、平均绝对百分比误差最小;动态集成模型对比静态集成模型,预测精度更高,能够实现对入口NO_(x)质量浓度的准确软测量。 展开更多
关键词 NO_(x)动态建模 最大相关-最小冗余 贝叶斯优化 Stacking集成模型
在线阅读 下载PDF
Relief-MRMR-SVM在煤矸图像分类的研究 被引量:2
16
作者 张释如 朱萌 《煤炭工程》 北大核心 2022年第4期139-144,共6页
煤和矸石的图像分类是实现煤矸自动分选的关键环节。为提高煤矸分选模型的准确性和稳定性,提出了一种结合Relief、MRMR算法及SVM分类器构建的混合式特征选择及分类方法,提取煤矸图像的颜色及纹理共26个特征对其分类进行研究。在提取纹... 煤和矸石的图像分类是实现煤矸自动分选的关键环节。为提高煤矸分选模型的准确性和稳定性,提出了一种结合Relief、MRMR算法及SVM分类器构建的混合式特征选择及分类方法,提取煤矸图像的颜色及纹理共26个特征对其分类进行研究。在提取纹理时联合使用了LBP局部和GLCM全局特征,有助于提高分类的准确性。利用该特征选择方法选出最优特征子集后,用粒子群和支持向量机算法构建PSO-SVM最佳参数模型进行煤矸分类。结果显示,该方法能剔除较多冗余特征,提高煤矸分类的效率;在两个数据集上,该模型的平均分类准确率分别达到96.12%和94.17%,证明了方法的有效性和模型的稳定性。 展开更多
关键词 图像分类 特征选择 最大相关最小冗余算法 局部二值模式 煤和矸石
在线阅读 下载PDF
基于多特征优化算法的丁酰化修饰位点计算分类
17
作者 王丽娜 汪敬琳 《湖北文理学院学报》 2021年第2期16-20,共5页
赖氨酸丁酰化是一种新型酰化修饰,修饰位点的确定对相关疾病机理研究具有重要意义.计算分类方法由于其速度快、花费低、准确率高等优点为修饰位点的确定提供了一种新思路.本文以丁酰化修饰实验数据为研究对象,利用信息增益、F-Score和... 赖氨酸丁酰化是一种新型酰化修饰,修饰位点的确定对相关疾病机理研究具有重要意义.计算分类方法由于其速度快、花费低、准确率高等优点为修饰位点的确定提供了一种新思路.本文以丁酰化修饰实验数据为研究对象,利用信息增益、F-Score和最小冗余最大相关三种特征优化算法,结合支持向量机算法进行特征提取和融合,建立了速度快、准确率高的丁酰化修饰最优计算分类模型. 展开更多
关键词 蛋白质翻译后修饰 计算分类 多特征优化算法 信息增益算法 F-Score算法 最小冗余最大相关算法 支持向量机
在线阅读 下载PDF
联合mRMR算法和BP神经网络的集成电路测试方法 被引量:6
18
作者 侯旺超 梁华国 +2 位作者 宋钛 万金磊 蒋翠云 《微电子学》 CAS 北大核心 2021年第5期766-772,共7页
集成电路规模的急剧增大显著加了测试成本。针对集成电路测试成本过高的问题,提出了一种适应性测试方法。将最小冗余最大相关算法与BP神经网络相结合。首先通过最小冗余最大相关算法选择重要的测试项,仅测试重要的测试项并组成特征集合... 集成电路规模的急剧增大显著加了测试成本。针对集成电路测试成本过高的问题,提出了一种适应性测试方法。将最小冗余最大相关算法与BP神经网络相结合。首先通过最小冗余最大相关算法选择重要的测试项,仅测试重要的测试项并组成特征集合,然后使用BP神经网络模型预测测试结果。实验结果表明,相较于传统测试方法,该方法以牺牲0.1%的测试逃逸率为代价,降低了45%以上的测试成本。与其他适应性测试方法相比,该方法的测试逃逸降低91%以上,可以在测试成本和测试质量之间选择最优解。 展开更多
关键词 集成电路 适应性测试 BP神经网络 最小冗余最大相关算法
在线阅读 下载PDF
一种基于预排序的贝叶斯网络结构学习算法 被引量:1
19
作者 陈坤 姚望舒 《小型微型计算机系统》 CSCD 北大核心 2013年第9期2135-2138,共4页
贝叶斯网络结构学习对贝叶斯网络解决实际问题至关重要.基于评分与搜索的方法是目前比较常用的结构学习方法,但该类方法中结构搜索空间的大小随结点个数增加而指数增长,因此一般采用启发式搜索策略,有些方法还需要结点次序.在基于结点... 贝叶斯网络结构学习对贝叶斯网络解决实际问题至关重要.基于评分与搜索的方法是目前比较常用的结构学习方法,但该类方法中结构搜索空间的大小随结点个数增加而指数增长,因此一般采用启发式搜索策略,有些方法还需要结点次序.在基于结点次序的最大相关-最小冗余贪婪贝叶斯网络结构学习算法中,由于是随机产生初始结点的次序,这增大了结果的不确定性.本文提出一种生成优化结点初始次序的方法,在得到基本有序的结点初始次序后,再结合近邻交换算子进行迭代搜索,能够在较短的时间内得到更加正确的贝叶斯网络结构.实验结果表明了该方法的有效性. 展开更多
关键词 最大相关-最小冗余 贝叶斯网络 结构学习 结点次序
在线阅读 下载PDF
基于互信息变量选择的燃煤机组SCR脱硝系统PSO-ELM建模 被引量:1
20
作者 张瑾 姜浩 金秀章 《网络安全与数据治理》 2023年第9期88-95,共8页
针对燃煤机组SCR脱硝系统出口NOx浓度存在测量滞后以及吹扫时数据失真等问题,提出了一种基于特征提取和粒子群算法(PSO)优化极限学习机(ELM)超参数的燃煤机组SCR脱硝系统模型。利用互信息(MI)进行时间迟延补偿,采用最大相关最小冗余(mR... 针对燃煤机组SCR脱硝系统出口NOx浓度存在测量滞后以及吹扫时数据失真等问题,提出了一种基于特征提取和粒子群算法(PSO)优化极限学习机(ELM)超参数的燃煤机组SCR脱硝系统模型。利用互信息(MI)进行时间迟延补偿,采用最大相关最小冗余(mRMR)方法筛选辅助变量,通过PSO优化算法确定ELM最优超参数并建立预测模型,最后进行对比验证。仿真结果表明:采用本文方法所建立的PSO-ELM预测模型的均方误差和相关系数分别为0.9314 mg/m3和0.9786,预测精度高,能够为脱硝系统出口NOx的现场优化控制提供技术支持。 展开更多
关键词 互信息 粒子群算法 SCR脱硝系统 极限学习机 最大相关最小冗余
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部