提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统...提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统的Hankel矩阵,对Hankel矩阵进行奇异值分解即可确定系统的阶次,进而确定系统状态空间模型的参数.仿真研究和实验结果表明,此方法可以准确、快速地提取出结构的参数,且抗噪能力较强.展开更多
短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征...短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。展开更多
最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速...最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。展开更多
文摘提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统的Hankel矩阵,对Hankel矩阵进行奇异值分解即可确定系统的阶次,进而确定系统状态空间模型的参数.仿真研究和实验结果表明,此方法可以准确、快速地提取出结构的参数,且抗噪能力较强.
文摘短波通信原理简单,已广泛应用于大型无线通信系统。但在实际应用中,很多因素会影响短波通信,造成数据干扰,因此应采取有效的控制措施。基于此,分析短波通信的基本内容与主要特点,并在剖析短波通信干扰的基础上,分别从短波通信信号特征提取、干扰数据识别、数据干扰控制及实验测试4个方面,探讨基于最小均方(Least Mean Square,LMS)的短波通信数据干扰控制技术。
文摘最小均方(least mean square,LMS)算法在时变信道的最小稳态均方偏差(mean square deviation,MSD)由输入功率、噪声功率、随机扰动信号功率以及滤波器长度共同决定。为达到系统中最小的MSD值,传统的LMS算法存在有迭代次数较多和收敛速度慢等问题,提出了一种多态可变步长最小均方(multi-state variable step size least mean square,MVSS-LMS)算法。该算法通过添加暂态递减步长作为过渡,实现以更快的收敛速度达到系统中最小的MSD值。理论分析与仿真结果表明,与目前最新的Prob-LMS算法相比,所提算法在时变信道以及突变信道都具有更快的收敛速度和更低的MSD值,且算法的复杂度更低。