为实现对高光谱图像海面舰艇目标进行有效探测,通过对传统的目标探测算法进行改进,解决了加权自相关约束能量最小化算法(Constrained Energy Minimization,CEM)对于大目标地物提取效果不佳的问题.对高光谱图像做降维和端元提取处理,并...为实现对高光谱图像海面舰艇目标进行有效探测,通过对传统的目标探测算法进行改进,解决了加权自相关约束能量最小化算法(Constrained Energy Minimization,CEM)对于大目标地物提取效果不佳的问题.对高光谱图像做降维和端元提取处理,并利用提取的端元进行光谱角匹配(Spectral Angle Mapping,SAM)分类来确定两个重要的分类:舰船类和海水类;从所有像元中减去舰船类像元作为背景像元,通过基于纯背景像元加权自相关矩阵的SAM-CEM算法计算探测结果;通过分类图像来获得只包含海水和舰船的灰度图像,并进行二值化和数学形态学处理,寻找范围最大的白色区域为海水区域;通过对目标探测图像进行二值化,利用舰船目标在海水中的特点,去除不在海水区域内的虚警目标,从而确定最终的舰船目标.实验结果表明:该算法能够更好地增强目标信号而抑制背景信号,从而避免了加权自相关CEM算法中目标信号作为背景信号参与运算而对探测结果的影响,在对海面舰艇的目标探测中取得了令人满意的结果.展开更多
The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated...The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm.The deregularization maximized the energy of the solution,which was opposite to the Tikhonov regularization where the energy was minimized.However,combined with box-constraints,the deregularization forced the solution to be close to the binary set.It further exploited the box-constrained dichotomous coordinate descent algorithm and adapted it to the nonstationary iterative Tikhonov regularization to present an efficient detector.As a result,the worst-case and average complexity are reduced down as K2.8 and K2.5 floating point operation per second,respectively.The development improves the "efficient frontier" in multiuser detection,which is illustrated by simulation results.In addition,most operations in the detector are additions and bit-shifts.This makes the proposed technique attractive for fixed-point hardware implementation.展开更多
Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for inp...Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.展开更多
Based on minimum output energy,an improved blind multiuser detection algorithm is proposed by the use of Hopfield neural network.Compared with traditional algorithms,the proposed algorithm does not need the circuit fo...Based on minimum output energy,an improved blind multiuser detection algorithm is proposed by the use of Hopfield neural network.Compared with traditional algorithms,the proposed algorithm does not need the circuit for constraints.The resources are greatly saved and the complexity is reduced as well.The simulation results show that the performance of the improved algorithm is similar to that of the optimal multiuser detection algorithm which is not suitable for the mobile station.Compared with the traditional gradient blind multiuser detection algorithm,the convergence speed of the improved algorithm is quickened.展开更多
文摘为实现对高光谱图像海面舰艇目标进行有效探测,通过对传统的目标探测算法进行改进,解决了加权自相关约束能量最小化算法(Constrained Energy Minimization,CEM)对于大目标地物提取效果不佳的问题.对高光谱图像做降维和端元提取处理,并利用提取的端元进行光谱角匹配(Spectral Angle Mapping,SAM)分类来确定两个重要的分类:舰船类和海水类;从所有像元中减去舰船类像元作为背景像元,通过基于纯背景像元加权自相关矩阵的SAM-CEM算法计算探测结果;通过分类图像来获得只包含海水和舰船的灰度图像,并进行二值化和数学形态学处理,寻找范围最大的白色区域为海水区域;通过对目标探测图像进行二值化,利用舰船目标在海水中的特点,去除不在海水区域内的虚警目标,从而确定最终的舰船目标.实验结果表明:该算法能够更好地增强目标信号而抑制背景信号,从而避免了加权自相关CEM算法中目标信号作为背景信号参与运算而对探测结果的影响,在对海面舰艇的目标探测中取得了令人满意的结果.
文摘The presented iterative multiuser detection technique was based on joint deregularized and box-constrained solution to quadratic optimization with iterations similar to that used in the nonstationary Tikhonov iterated algorithm.The deregularization maximized the energy of the solution,which was opposite to the Tikhonov regularization where the energy was minimized.However,combined with box-constraints,the deregularization forced the solution to be close to the binary set.It further exploited the box-constrained dichotomous coordinate descent algorithm and adapted it to the nonstationary iterative Tikhonov regularization to present an efficient detector.As a result,the worst-case and average complexity are reduced down as K2.8 and K2.5 floating point operation per second,respectively.The development improves the "efficient frontier" in multiuser detection,which is illustrated by simulation results.In addition,most operations in the detector are additions and bit-shifts.This makes the proposed technique attractive for fixed-point hardware implementation.
基金supported by the National Key Technologies R&D Program of China under Grant No. 2015BAK38B01the National Natural Science Foundation of China under Grant Nos. 61174103 and 61603032+4 种基金the National Key Research and Development Program of China under Grant Nos. 2016YFB0700502, 2016YFB1001404, and 2017YFB0702300the China Postdoctoral Science Foundation under Grant No. 2016M590048the Fundamental Research Funds for the Central Universities under Grant No. 06500025the University of Science and Technology Beijing - Taipei University of Technology Joint Research Program under Grant No. TW201610the Foundation from the Taipei University of Technology of Taiwan under Grant No. NTUT-USTB-105-4
文摘Quantized kernel least mean square(QKLMS) algorithm is an effective nonlinear adaptive online learning algorithm with good performance in constraining the growth of network size through the use of quantization for input space. It can serve as a powerful tool to perform complex computing for network service and application. With the purpose of compressing the input to further improve learning performance, this article proposes a novel QKLMS with entropy-guided learning, called EQ-KLMS. Under the consecutive square entropy learning framework, the basic idea of entropy-guided learning technique is to measure the uncertainty of the input vectors used for QKLMS, and delete those data with larger uncertainty, which are insignificant or easy to cause learning errors. Then, the dataset is compressed. Consequently, by using square entropy, the learning performance of proposed EQ-KLMS is improved with high precision and low computational cost. The proposed EQ-KLMS is validated using a weather-related dataset, and the results demonstrate the desirable performance of our scheme.
基金Supported by China Postdoctoral Science Foundation(No.20060390170)Science and Technology Development Foundation of Tianjin University(No.20060610)
文摘Based on minimum output energy,an improved blind multiuser detection algorithm is proposed by the use of Hopfield neural network.Compared with traditional algorithms,the proposed algorithm does not need the circuit for constraints.The resources are greatly saved and the complexity is reduced as well.The simulation results show that the performance of the improved algorithm is similar to that of the optimal multiuser detection algorithm which is not suitable for the mobile station.Compared with the traditional gradient blind multiuser detection algorithm,the convergence speed of the improved algorithm is quickened.